These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 17930108)
1. Analytical approach to directed sandpile models on the Apollonian network. Vieira AP; Andrade JS; Herrmann HJ; Andrade RF Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026111. PubMed ID: 17930108 [TBL] [Abstract][Full Text] [Related]
2. Inhomogeneous sandpile model: Crossover from multifractal scaling to finite-size scaling. Cernák J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066125. PubMed ID: 16906932 [TBL] [Abstract][Full Text] [Related]
3. Sandpile models and random walkers on finite lattices. Shilo Y; Biham O Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066102. PubMed ID: 16241299 [TBL] [Abstract][Full Text] [Related]
4. Renormalization-group approach to an Abelian sandpile model on planar lattices. Lin CY; Hu CK Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021307. PubMed ID: 12241170 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model. Santra SB; Chanu SR; Deb D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041122. PubMed ID: 17500880 [TBL] [Abstract][Full Text] [Related]
6. Exact solution of a stochastic directed sandpile model. Kloster M; Maslov S; Tang C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026111. PubMed ID: 11308546 [TBL] [Abstract][Full Text] [Related]
7. Sticky grains do not change the universality class of isotropic sandpiles. Bonachela JA; Ramasco JJ; Chaté H; Dornic I; Muñoz MA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):050102. PubMed ID: 17279864 [TBL] [Abstract][Full Text] [Related]
8. Directed polymer in a random medium of dimension 1+3: multifractal properties at the localization-delocalization transition. Monthus C; Garel T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051122. PubMed ID: 17677037 [TBL] [Abstract][Full Text] [Related]
9. Flooding transition in the topography of toppling surfaces of stochastic and rotational sandpile models. Ahmed JA; Santra SB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031111. PubMed ID: 22587042 [TBL] [Abstract][Full Text] [Related]
10. Multifractal statistics of the local order parameter at random critical points: application to wetting transitions with disorder. Monthus C; Garel T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021114. PubMed ID: 17930013 [TBL] [Abstract][Full Text] [Related]
11. Ising models on the regularized Apollonian network. Serva M; Fulco UL; Albuquerque EL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042823. PubMed ID: 24229241 [TBL] [Abstract][Full Text] [Related]
12. Magnetic models on Apollonian networks. Andrade RF; Herrmann HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056131. PubMed ID: 16089626 [TBL] [Abstract][Full Text] [Related]
13. Comment on "universality in sandpiles". De Menech M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):028101. PubMed ID: 15447623 [TBL] [Abstract][Full Text] [Related]
14. Convex-set description of quantum phase transitions in the transverse Ising model using reduced-density-matrix theory. Schwerdtfeger CA; Mazziotti DA J Chem Phys; 2009 Jun; 130(22):224102. PubMed ID: 19530757 [TBL] [Abstract][Full Text] [Related]
15. Analytical solution of average path length for Apollonian networks. Zhang Z; Chen L; Zhou S; Fang L; Guan J; Zou T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):017102. PubMed ID: 18351964 [TBL] [Abstract][Full Text] [Related]