These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 17930153)
1. Influence of interatomic bonding potentials on detonation properties. Heim AJ; Grønbech-Jensen N; Germann TC; Holian BL; Kober EM; Lomdahl PS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026318. PubMed ID: 17930153 [TBL] [Abstract][Full Text] [Related]
2. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics. Guo D; Zybin SV; An Q; Goddard WA; Huang F Phys Chem Chem Phys; 2016 Jan; 18(3):2015-22. PubMed ID: 26688211 [TBL] [Abstract][Full Text] [Related]
3. Interaction potential for atomic simulations of conventional high explosives. Heim AJ; Grønbech-Jensen N; Kober EM; Erpenbeck JJ; Germann TC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046709. PubMed ID: 18999563 [TBL] [Abstract][Full Text] [Related]
4. Influence of discrete sources on detonation propagation in a Burgers equation analog system. Mi X; Higgins AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053014. PubMed ID: 26066256 [TBL] [Abstract][Full Text] [Related]
5. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: microscopic calculation of the Chapman-Jouguet state. Bourasseau E; Dubois V; Desbiens N; Maillet JB J Chem Phys; 2007 Aug; 127(8):084513. PubMed ID: 17764275 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of weak detonations. Am-Shallem M; Zeiri Y; Zybin SV; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061122. PubMed ID: 22304055 [TBL] [Abstract][Full Text] [Related]
7. Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics. Zhou T; Zybin SV; Goddard WA; Cheng T; Naserifar S; Jaramillo-Botero A; Huang F Phys Chem Chem Phys; 2018 Feb; 20(6):3953-3969. PubMed ID: 29367992 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model. Ivanov MF; Kiverin AD; Liberman MA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653 [TBL] [Abstract][Full Text] [Related]
9. Laminar, cellular, transverse, and multiheaded pulsating detonations in condensed phase energetic materials from molecular dynamics simulations. Zhakhovsky VV; Budzevich MM; Landerville AC; Oleynik II; White CT Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033312. PubMed ID: 25314569 [TBL] [Abstract][Full Text] [Related]
10. Numerical simulations of large-scale detonation tests in the RUT facility by the LES model. Zbikowski M; Makarov D; Molkov V J Hazard Mater; 2010 Sep; 181(1-3):949-56. PubMed ID: 20541862 [TBL] [Abstract][Full Text] [Related]
11. Microscopic simulations of supersonic and subsonic exothermic chemical wave fronts and transition to detonation. Lemarchand A; Nowakowski B; Dumazer G; Antoine C J Chem Phys; 2011 Jan; 134(3):034121. PubMed ID: 21261344 [TBL] [Abstract][Full Text] [Related]
12. Jones-Wilkins-Lee Unreacted and Reaction Product Equations of State for Overdriven Detonations in Octogen- and Triaminotrinitrobenzene-Based Plastic-Bonded Explosives. Tarver CM J Phys Chem A; 2020 Feb; 124(7):1399-1408. PubMed ID: 31967469 [TBL] [Abstract][Full Text] [Related]
13. Deep Potential Molecular Dynamics Study of Chapman-Jouguet Detonation Events of Energetic Materials. Zhang J; Guo W; Yao Y J Phys Chem Lett; 2023 Aug; 14(32):7141-7148. PubMed ID: 37535980 [TBL] [Abstract][Full Text] [Related]
14. Numerical prediction of steady-state detonation properties of condensed-phase explosives. Cengiz F; Ulas A J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772 [TBL] [Abstract][Full Text] [Related]
15. Shock and detonation properties of solid explosives with gaseous products. Abdulazeem MS J Hazard Mater; 2010 May; 177(1-3):372-6. PubMed ID: 20045247 [TBL] [Abstract][Full Text] [Related]
17. Increasing Oxygen Balance Leads to Enhanced Performance in Environmentally Acceptable High-Energy Density Materials: Predictions from First-Principles Molecular Dynamics Simulations. Guo D; Zybin SV; Chafin AP; Goddard WA ACS Appl Mater Interfaces; 2022 Feb; 14(4):5257-5264. PubMed ID: 35040628 [TBL] [Abstract][Full Text] [Related]
18. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives. Keshavarz MH J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789 [TBL] [Abstract][Full Text] [Related]
19. Effect of deuteration on the diameter-effect curve of liquid nitromethane. Engelke R; Sheffield SA; Stacy HL J Phys Chem A; 2006 Jun; 110(24):7744-8. PubMed ID: 16774223 [TBL] [Abstract][Full Text] [Related]
20. Gas-phase detonation propagation in mixture composition gradients. Kessler DA; Gamezo VN; Oran ES Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):567-96. PubMed ID: 22213660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]