These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 17930178)
1. Threshold law for escaping from the Hénon-Heiles system. Zhao HJ; Du ML Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):027201. PubMed ID: 17930178 [TBL] [Abstract][Full Text] [Related]
2. Noisy scattering dynamics in the randomly driven Hénon-Heiles oscillator. Gan C; Yang S; Lei H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066204. PubMed ID: 21230720 [TBL] [Abstract][Full Text] [Related]
3. Analytic approach to bifurcation cascades in a class of generalized Hénon-Heiles potentials. Fedotkin SN; Magner AG; Brack M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066219. PubMed ID: 18643362 [TBL] [Abstract][Full Text] [Related]
4. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation. Toledo-Marín JQ; Naumis GG Phys Rev E; 2018 Apr; 97(4-1):042106. PubMed ID: 29758677 [TBL] [Abstract][Full Text] [Related]
5. Calculations of periodic trajectories for the Henon-Heiles Hamiltonian using the monodromy method. Davies KT; Huston TE; Baranger M Chaos; 1992 Apr; 2(2):215-224. PubMed ID: 12779967 [TBL] [Abstract][Full Text] [Related]
6. Perturbed ion traps: A generalization of the three-dimensional Henon-Heiles problem. Lanchares V; Pascual AI; Palacian J; Yanguas P; Salas JP Chaos; 2002 Mar; 12(1):87-99. PubMed ID: 12779536 [TBL] [Abstract][Full Text] [Related]
7. Wada basins and chaotic invariant sets in the Hénon-Heiles system. Aguirre J; Vallejo JC; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066208. PubMed ID: 11736269 [TBL] [Abstract][Full Text] [Related]
9. Periodic orbit theory for the Hénon-Heiles system in the continuum region. Kaidel J; Winkler P; Brack M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066208. PubMed ID: 15697485 [TBL] [Abstract][Full Text] [Related]
10. Effect of a magnetic flux line on the quantum beats in the Henon-Heiles level density. Brack M; Bhaduri RK; Law J; Maier C; Murthy MV Chaos; 1995 Mar; 5(1):317-329. PubMed ID: 12780185 [TBL] [Abstract][Full Text] [Related]
11. Hamiltonian neural networks for solving equations of motion. Mattheakis M; Sondak D; Dogra AS; Protopapas P Phys Rev E; 2022 Jun; 105(6-2):065305. PubMed ID: 35854562 [TBL] [Abstract][Full Text] [Related]
12. Quantum Dynamics of Oblique Vibrational States in the Hénon-Heiles System. Zúñiga J; Bastida A; Requena A J Phys Chem A; 2023 Oct; 127(41):8663-8675. PubMed ID: 37801706 [TBL] [Abstract][Full Text] [Related]
14. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods. Gómez Pueyo A; Marques MAL; Rubio A; Castro A J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048 [TBL] [Abstract][Full Text] [Related]
15. Multilayer multiconfiguration time-dependent Hartree method: implementation and applications to a Henon-Heiles hamiltonian and to pyrazine. Vendrell O; Meyer HD J Chem Phys; 2011 Jan; 134(4):044135. PubMed ID: 21280715 [TBL] [Abstract][Full Text] [Related]
16. Interactions between two touching spherical particles in sedimentation. Sun R; Chwang AT Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046316. PubMed ID: 17995115 [TBL] [Abstract][Full Text] [Related]
17. Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Qin H; Guan X Phys Rev Lett; 2008 Jan; 100(3):035006. PubMed ID: 18232993 [TBL] [Abstract][Full Text] [Related]
19. Using scattering theory to compute invariant manifolds and numerical results for the laser-driven Hénon-Heiles system. Blazevski D; Franklin J Chaos; 2012 Dec; 22(4):043138. PubMed ID: 23278073 [TBL] [Abstract][Full Text] [Related]
20. Implementation of an algorithm based on the Runge-Kutta-Fehlberg technique and the potential energy as a reaction coordinate to locate intrinsic reaction paths. Aguilar-Mogas A; Giménez X; Bofill JM J Comput Chem; 2010 Oct; 31(13):2510-25. PubMed ID: 20652993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]