These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 17930199)
1. Melting transitions in isotropically confined three-dimensional small Coulomb clusters. Apolinario SW; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031107. PubMed ID: 17930199 [TBL] [Abstract][Full Text] [Related]
2. Inhomogeneous melting in anisotropically confined two-dimensional clusters. Apolinario SW; Partoens B; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031107. PubMed ID: 17025594 [TBL] [Abstract][Full Text] [Related]
3. Angular melting scenarios in binary dusty-plasma Coulomb balls: magic versus normal clusters. Apolinario SW; Aguiar JA; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063113. PubMed ID: 25615211 [TBL] [Abstract][Full Text] [Related]
4. Multistep radial melting in small two-dimensional classical clusters. Tomecka DM; Partoens B; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):062401. PubMed ID: 16089792 [TBL] [Abstract][Full Text] [Related]
5. Radial-fluctuation-induced stabilization of the ordered state in two-dimensional classical clusters. Schweigert IV; Schweigert VA; Peeters FM Phys Rev Lett; 2000 May; 84(19):4381-4. PubMed ID: 10990691 [TBL] [Abstract][Full Text] [Related]
6. Topological defects and nonhomogeneous melting of large two-dimensional Coulomb clusters. Kong M; Partoens B; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021608. PubMed ID: 12636693 [TBL] [Abstract][Full Text] [Related]
7. Normal modes of a small bilayer system of binary classical charged particles trapped in a parabolic confinement potential. Lu X; Li B; Wu CQ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041401. PubMed ID: 18999421 [TBL] [Abstract][Full Text] [Related]
8. Structure and melting of two-species charged clusters in a parabolic trap. Drocco JA; Reichhardt CJ; Reichhardt C; Jankó B Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):060401. PubMed ID: 14754169 [TBL] [Abstract][Full Text] [Related]
9. Structural phase transitions and unusual melting behavior in a classical two-dimensional Coulomb bound cluster. Ferreira WP; Partoens B; Peeters FM; Farias GA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021501. PubMed ID: 15783327 [TBL] [Abstract][Full Text] [Related]
10. Hysteresis and reentrant melting of a self-organized system of classical particles confined in a parabolic trap. Munarin FF; Nelissen K; Ferreira WP; Farias GA; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031608. PubMed ID: 18517396 [TBL] [Abstract][Full Text] [Related]
11. Resolving structural transitions in spherical dust clusters. Thomsen H; Bonitz M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043104. PubMed ID: 25974599 [TBL] [Abstract][Full Text] [Related]
12. 2D melting of confined colloids with a mixture of square and triangular order. Jungmann RM; Pereira PCN; Apolinario SWS J Phys Condens Matter; 2018 Nov; 30(46):465402. PubMed ID: 30247148 [TBL] [Abstract][Full Text] [Related]
13. A two-component mixture of charged particles confined in a channel: melting. Ferreira WP; Farias GA; Peeters FM J Phys Condens Matter; 2010 Jul; 22(28):285103. PubMed ID: 21399292 [TBL] [Abstract][Full Text] [Related]
14. Influence of a defect particle on the structure of a classical two-dimensional cluster. Nelissen K; Partoens B; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046605. PubMed ID: 15169116 [TBL] [Abstract][Full Text] [Related]
15. Ground state configurations and melting of two-dimensional non-uniformly charged classical clusters. Tomecka DM; Kamieniarz G; Partoens B; Peeters FM J Phys Condens Matter; 2009 Apr; 21(15):155301. PubMed ID: 21825360 [TBL] [Abstract][Full Text] [Related]
16. Melting and evaporation in classical two-dimensional clusters confined by a Coulomb potential. Ferreira WP; Peeters FM; Farias GA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041502. PubMed ID: 16383380 [TBL] [Abstract][Full Text] [Related]
17. Mode spectra of thermally excited two-dimensional dust Coulomb clusters. Melzer A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016411. PubMed ID: 12636615 [TBL] [Abstract][Full Text] [Related]
18. Structure and spectrum of two-dimensional clusters confined in a hard wall potential. Kong M; Partoens B; Matulis A; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036412. PubMed ID: 15089420 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional binary clusters in a hard-wall trap: Structural and spectral properties. Yang W; Kong M; Milosević MV; Zeng Z; Peeters FM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041404. PubMed ID: 17994985 [TBL] [Abstract][Full Text] [Related]
20. Structure of spherical three-dimensional Coulomb crystals. Ludwig P; Kosse S; Bonitz M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046403. PubMed ID: 15903790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]