These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. Latva-Kokko M; Rothman DH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056702. PubMed ID: 16089686 [TBL] [Abstract][Full Text] [Related]
23. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers. Fakhari A; Lee T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023304. PubMed ID: 23496636 [TBL] [Abstract][Full Text] [Related]
24. Lattice Boltzmann study of spinodal decomposition in two dimensions. Chin J; Coveney PV Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016303. PubMed ID: 12241477 [TBL] [Abstract][Full Text] [Related]
25. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H; Valocchi AJ; Zhang Y; Kang Q Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [TBL] [Abstract][Full Text] [Related]
26. Derivation and thermodynamics of a lattice Boltzmann model with soluble amphiphilic surfactant. Furtado K; Skartlien R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066704. PubMed ID: 20866541 [TBL] [Abstract][Full Text] [Related]
27. Scaling of dynamic contact angles in a lattice-Boltzmann model. Latva-Kokko M; Rothman DH Phys Rev Lett; 2007 Jun; 98(25):254503. PubMed ID: 17678029 [TBL] [Abstract][Full Text] [Related]
28. Multicomponent lattice Boltzmann equation method with a discontinuous hydrodynamic interface. Spencer TJ; Halliday I Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063305. PubMed ID: 24483582 [TBL] [Abstract][Full Text] [Related]
29. Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids. Guo Z; Zhao TS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):035302. PubMed ID: 14524822 [TBL] [Abstract][Full Text] [Related]
31. Capillary filling with pseudo-potential binary Lattice-Boltzmann model. Chibbaro S Eur Phys J E Soft Matter; 2008 Sep; 27(1):99-106. PubMed ID: 19230139 [TBL] [Abstract][Full Text] [Related]
32. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Lallemand P; Luo LS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925 [TBL] [Abstract][Full Text] [Related]
33. Using patterned substrates to promote mixing in microchannels. Kuksenok O; Yeomans JM; Balazs AC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031502. PubMed ID: 11909061 [TBL] [Abstract][Full Text] [Related]
34. Lattice Boltzmann model for wave propagation. Zhang J; Yan G; Shi X Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026706. PubMed ID: 19792280 [TBL] [Abstract][Full Text] [Related]
35. Acoustic equations of state for simple lattice Boltzmann velocity sets. Viggen EM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013310. PubMed ID: 25122413 [TBL] [Abstract][Full Text] [Related]
36. Lattice Boltzmann methods for binary mixtures with different molecular weights. McCracken ME; Abraham J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046704. PubMed ID: 15903815 [TBL] [Abstract][Full Text] [Related]
37. Lattice-boltzmann model for interacting amphiphilic fluids. Nekovee M; Coveney PV; Chen H; Boghosian BM Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8282-94. PubMed ID: 11138126 [TBL] [Abstract][Full Text] [Related]
38. Three-dimensional lattice Boltzmann model for magnetic reconnection. Mendoza M; Muñoz JD Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026713. PubMed ID: 18352154 [TBL] [Abstract][Full Text] [Related]
39. Finite-difference lattice-Boltzmann methods for binary fluids. Xu A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066706. PubMed ID: 16089910 [TBL] [Abstract][Full Text] [Related]
40. Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: Lattice-Boltzmann simulations. González-Segredo N; Coveney PV Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061501. PubMed ID: 15244570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]