These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 17930367)
41. Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids. Lallemand P; D'Humières D; Luo LS; Rubinstein R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021203. PubMed ID: 12636662 [TBL] [Abstract][Full Text] [Related]
42. Lattice Boltzmann method for diffusion-limited partial dissolution of fluids. Aursjø O; Pride SR Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013306. PubMed ID: 26274306 [TBL] [Abstract][Full Text] [Related]
43. On moving contact lines simulated by the single-component two-phase lattice-Boltzmann method. Huang JJ; Wu J Eur Phys J E Soft Matter; 2016 Apr; 39(4):46. PubMed ID: 27118536 [TBL] [Abstract][Full Text] [Related]
44. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method. Amiri Delouei A; Nazari M; Kayhani MH; Succi S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053312. PubMed ID: 25353919 [TBL] [Abstract][Full Text] [Related]
45. Three-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly in binary immiscible and ternary amphiphilic fluids. Love PJ; Coveney PV; Boghosian BM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021503. PubMed ID: 11497585 [TBL] [Abstract][Full Text] [Related]
46. Low-frequency sound transmission through a gas-liquid interface. Godin OA J Acoust Soc Am; 2008 Apr; 123(4):1866-79. PubMed ID: 18396996 [TBL] [Abstract][Full Text] [Related]
47. Dynamics of a two-layer immiscible fluid system exposed to ultrasound. Hoque SZ; Sen AK J Acoust Soc Am; 2024 Mar; 155(3):1655-1666. PubMed ID: 38426837 [TBL] [Abstract][Full Text] [Related]
48. Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions. Harting J; Giupponi G; Coveney PV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041504. PubMed ID: 17500899 [TBL] [Abstract][Full Text] [Related]
49. Electroosmotic flow in a water column surrounded by an immiscible liquid. Movahed S; Khani S; Wen JZ; Li D J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326 [TBL] [Abstract][Full Text] [Related]
50. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method. Kobayashi K; Kodama T; Takahira H Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295 [TBL] [Abstract][Full Text] [Related]
52. Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography. Sukop MC; Huang H; Lin CL; Deo MD; Oh K; Miller JD Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026710. PubMed ID: 18352151 [TBL] [Abstract][Full Text] [Related]
53. Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces. Zhang J; Kwok DY Langmuir; 2004 Sep; 20(19):8137-41. PubMed ID: 15350084 [TBL] [Abstract][Full Text] [Related]
54. Finite-difference-based lattice Boltzmann model for dense binary mixtures. Guo Z; Zhao TS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026701. PubMed ID: 15783450 [TBL] [Abstract][Full Text] [Related]
55. Conservative phase-field lattice Boltzmann model for interface tracking equation. Geier M; Fakhari A; Lee T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063309. PubMed ID: 26172824 [TBL] [Abstract][Full Text] [Related]
56. A theoretical study of ultrasonic wave transmission through a fluid-solid interface. Belgroune D; de Belleval JF; Djelouah H Ultrasonics; 2008 Jul; 48(3):220-30. PubMed ID: 18328524 [TBL] [Abstract][Full Text] [Related]
57. Acoustic wave propagation in equivalent fluid macroscopically inhomogeneous materials. Cieszko M; Drelich R; Pakula M J Acoust Soc Am; 2012 Nov; 132(5):2970-7. PubMed ID: 23145584 [TBL] [Abstract][Full Text] [Related]
58. Static contact angle in lattice Boltzmann models of immiscible fluids. Latva-Kokko M; Rothman DH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046701. PubMed ID: 16383561 [TBL] [Abstract][Full Text] [Related]
59. Acoustic wave dispersion in a one-dimensional lattice of nonlinear resonant scatterers. Richoux O; Tournat V; Le Van Suu T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026615. PubMed ID: 17358444 [TBL] [Abstract][Full Text] [Related]
60. Medium characterization from interface-wave impedance and ellipticity using simultaneous displacement and pressure measurements. van Dalen KN; Drijkoningen GG; Smeulders DM; Heller HK; Glorieux C; Sarens B; Verstraeten B J Acoust Soc Am; 2011 Sep; 130(3):1299-312. PubMed ID: 21895072 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]