These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 17930722)

  • 1. Thermal radiation from carbon nanotubes in the terahertz range.
    Nemilentsau AM; Slepyan GY; Maksimenko SA
    Phys Rev Lett; 2007 Oct; 99(14):147403. PubMed ID: 17930722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling the coupling of surface plasmons in carbon nanotubes by near-field nanoscopy.
    Tian X; Chen R; Chen J
    Nanoscale; 2021 Aug; 13(29):12454-12459. PubMed ID: 34477610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial thermal conductance observed to be higher in semiconducting than metallic carbon nanotubes.
    Kang SD; Lim SC; Lee ES; Cho YW; Kim YH; Lyeo HK; Lee YH
    ACS Nano; 2012 May; 6(5):3853-60. PubMed ID: 22468828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.
    Yuan X; Zhu W; Zhang Y; Xu N; Yan Y; Wu J; Shen Y; Chen J; She J; Deng S
    Sci Rep; 2016 Sep; 6():32936. PubMed ID: 27609247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser induced selective removal of metallic carbon nanotubes.
    Mahjouri-Samani M; Zhou YS; Xiong W; Gao Y; Mitchell M; Lu YF
    Nanotechnology; 2009 Dec; 20(49):495202. PubMed ID: 19893146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman characterization of thermal conduction in transparent carbon nanotube films.
    Kim D; Zhu L; Han CS; Kim JH; Baik S
    Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.
    Sanchez JA; Mengüç MP
    Nanotechnology; 2008 Feb; 19(7):075702. PubMed ID: 21817650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal.
    Kalakonda P; Basu R; Nemitz IR; Rosenblatt C; Iannacchione GS
    J Chem Phys; 2014 Mar; 140(10):104908. PubMed ID: 24628206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a carbon-nanotube-based field-effect transistor by microcontact printing.
    Mehlich J; Miyata Y; Shinohara H; Ravoo BJ
    Small; 2012 Jul; 8(14):2258-63. PubMed ID: 22511338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the effective thermal conductivity of carbon nanotube based nanofluids.
    Venkata Sastry NN; Bhunia A; Sundararajan T; Das SK
    Nanotechnology; 2008 Feb; 19(5):055704. PubMed ID: 21817618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation.
    Hong WK; Lee C; Nepal D; Geckeler KE; Shin K; Lee T
    Nanotechnology; 2006 Nov; 17(22):5675-80. PubMed ID: 21727341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale contacts between carbon nanotubes and metallic pads.
    Peng N; Li H; Zhang Q
    ACS Nano; 2009 Dec; 3(12):4117-21. PubMed ID: 19894695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.