These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17930751)

  • 1. Bootstrapping approach for generating maximally path-entangled photon states.
    Kapale KT; Dowling JP
    Phys Rev Lett; 2007 Aug; 99(5):053602. PubMed ID: 17930751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot.
    Heo J; Hong C; Choi SG; Hong JP
    Sci Rep; 2019 Jul; 9(1):10151. PubMed ID: 31300664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and simple scheme for generating NOON states of photons in circuit QED.
    Su QP; Yang CP; Zheng SB
    Sci Rep; 2014 Jan; 4():3898. PubMed ID: 24469334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble.
    Nikoghosyan G; Hartmann MJ; Plenio MB
    Phys Rev Lett; 2012 Mar; 108(12):123603. PubMed ID: 22540581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications.
    Liu T; Guo BQ; Yu CS; Zhang WN
    Opt Express; 2018 Feb; 26(4):4498-4511. PubMed ID: 29475300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of quantum state collapse and revival due to the single-photon Kerr effect.
    Kirchmair G; Vlastakis B; Leghtas Z; Nigg SE; Paik H; Ginossar E; Mirrahimi M; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2013 Mar; 495(7440):205-9. PubMed ID: 23486059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity.
    Hong CH; Heo J; Kang MS; Jang J; Yang HJ
    Sci Rep; 2018 Feb; 8(1):2566. PubMed ID: 29416070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancilla-Assisted Generation of Photons from Vacuum via Time-Modulation of Extracavity Qubit.
    de Paula MVS; Sinesio WWT; Dodonov AV
    Entropy (Basel); 2023 Jun; 25(6):. PubMed ID: 37372245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective protocol for generating NOON states of resonator modes.
    Kang YH; Lin ZP; Yang JQ; Wang Y; Song J; Yang ZB; Xia Y
    Opt Express; 2023 Dec; 31(26):42976-42994. PubMed ID: 38178402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of multiphoton entangled states by using weak nonlinearities.
    He YQ; Ding D; Yan FL; Gao T
    Sci Rep; 2016 Jan; 6():19116. PubMed ID: 26751044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of broadband ultraviolet frequency-entangled photons using cavity quantum plasmonics.
    Oka H
    Sci Rep; 2017 Aug; 7(1):8047. PubMed ID: 28808262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED.
    Zheng SB; Guo GC
    Phys Rev Lett; 2000 Sep; 85(11):2392-5. PubMed ID: 10978018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Source of Path-Entangled Photon Pairs with Efficient Pump Self-Rejection.
    de la Hoz P; Sakovich A; Mikhalychev A; Thornton M; Korolkova N; Mogilevtsev D
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33007953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of four-photon polarization entangled decoherence-free states with cross-Kerr nonlinearity.
    Wang M; Yan F; Gao T
    Sci Rep; 2016 Nov; 6():38233. PubMed ID: 27901116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolving phase measurements with a multiphoton entangled state.
    Mitchell MW; Lundeen JS; Steinberg AM
    Nature; 2004 May; 429(6988):161-4. PubMed ID: 15141206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heralding two-photon and four-photon path entanglement on a chip.
    Matthews JC; Politi A; Bonneau D; O'Brien JL
    Phys Rev Lett; 2011 Oct; 107(16):163602. PubMed ID: 22107381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient generation of entangled photons by controlling cavity bipolariton states.
    Oka H; Ishihara H
    Phys Rev Lett; 2008 May; 100(17):170505. PubMed ID: 18518266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-NOON states by mixing quantum and classical light.
    Afek I; Ambar O; Silberberg Y
    Science; 2010 May; 328(5980):879-81. PubMed ID: 20466927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating arbitrary photon-number entangled states for continuous-variable quantum informatics.
    Lee SY; Park J; Lee HW; Nha H
    Opt Express; 2012 Jun; 20(13):14221-33. PubMed ID: 22714485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.