These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 17930759)
1. Slow dynamics in a turbulent von Kármán swirling flow. de la Torre A; Burguete J Phys Rev Lett; 2007 Aug; 99(5):054101. PubMed ID: 17930759 [TBL] [Abstract][Full Text] [Related]
2. Bifurcation induced by the aspect ratio in a turbulent von Kármán swirling flow. Liot O; Burguete J Phys Rev E; 2017 Jan; 95(1-1):013101. PubMed ID: 28208477 [TBL] [Abstract][Full Text] [Related]
3. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing. Burnishev Y; Steinberg V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023001. PubMed ID: 26382497 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of reversals and condensates in two-dimensional Kolmogorov flows. Mishra PK; Herault J; Fauve S; Verma MK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053005. PubMed ID: 26066247 [TBL] [Abstract][Full Text] [Related]
5. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Giesecke A; Stefani F; Burguete J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066303. PubMed ID: 23368034 [TBL] [Abstract][Full Text] [Related]
6. Influence of counter-rotating von Kármán flow on cylindrical Rayleigh-Bénard convection. Bordja L; Tuckerman LS; Witkowski LM; Navarro MC; Barkley D; Bessaih R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036322. PubMed ID: 20365869 [TBL] [Abstract][Full Text] [Related]
7. Long-term memory in experiments and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Mininni P; Dmitruk P; Odier P; Pinton JF; Plihon N; Verhille G; Volk R; Bourgoin M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053005. PubMed ID: 25353878 [TBL] [Abstract][Full Text] [Related]
8. The flow structure of a puff. van Doorne CW; Westerweel J Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):489-507. PubMed ID: 18990660 [TBL] [Abstract][Full Text] [Related]
9. Evidence for forcing-dependent steady states in a turbulent swirling flow. Saint-Michel B; Dubrulle B; Marié L; Ravelet F; Daviaud F Phys Rev Lett; 2013 Dec; 111(23):234502. PubMed ID: 24476277 [TBL] [Abstract][Full Text] [Related]
10. Experimental evidence of a phase transition in a closed turbulent flow. Cortet PP; Chiffaudel A; Daviaud F; Dubrulle B Phys Rev Lett; 2010 Nov; 105(21):214501. PubMed ID: 21231308 [TBL] [Abstract][Full Text] [Related]
11. Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Ravelet F; Marié L; Chiffaudel A; Daviaud F Phys Rev Lett; 2004 Oct; 93(16):164501. PubMed ID: 15524994 [TBL] [Abstract][Full Text] [Related]
12. Dynamical-systems analysis and unstable periodic orbits in reacting flows behind symmetric bluff bodies. Hua JC; Gunaratne GH; Kostka S; Jiang N; Kiel BV; Gord JR; Roy S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033011. PubMed ID: 24125348 [TBL] [Abstract][Full Text] [Related]
13. Properties of steady states in turbulent axisymmetric flows. Monchaux R; Ravelet F; Dubrulle B; Chiffaudel A; Daviaud F Phys Rev Lett; 2006 Mar; 96(12):124502. PubMed ID: 16605910 [TBL] [Abstract][Full Text] [Related]
14. Computational study of subcritical response in flow past a circular cylinder. Cantwell CD; Barkley D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026315. PubMed ID: 20866913 [TBL] [Abstract][Full Text] [Related]
15. Universal model of finite reynolds number turbulent flow in channels and pipes. L'vov VS; Procaccia I; Rudenko O Phys Rev Lett; 2008 Feb; 100(5):054504. PubMed ID: 18352377 [TBL] [Abstract][Full Text] [Related]
16. Kinematic α tensors and dynamo mechanisms in a von Kármán swirling flow. Ravelet F; Dubrulle B; Daviaud F; Ratié PA Phys Rev Lett; 2012 Jul; 109(2):024503. PubMed ID: 23030166 [TBL] [Abstract][Full Text] [Related]
17. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Monchaux R; Berhanu M; Bourgoin M; Moulin M; Odier P; Pinton JF; Volk R; Fauve S; Mordant N; Pétrélis F; Chiffaudel A; Daviaud F; Dubrulle B; Gasquet C; Marié L; Ravelet F Phys Rev Lett; 2007 Jan; 98(4):044502. PubMed ID: 17358779 [TBL] [Abstract][Full Text] [Related]
18. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions. Roy S; Hua JC; Barnhill W; Gunaratne GH; Gord JR Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013001. PubMed ID: 25679702 [TBL] [Abstract][Full Text] [Related]