These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 17930773)

  • 1. Superfluid to Mott-insulator transition in Bose-Hubbard models.
    Capello M; Becca F; Fabrizio M; Sorella S
    Phys Rev Lett; 2007 Aug; 99(5):056402. PubMed ID: 17930773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling expansion for the Bose-Hubbard and Jaynes-Cummings lattice models.
    Heil C; von der Linden W
    J Phys Condens Matter; 2012 Jul; 24(29):295601. PubMed ID: 22738846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibility of a first-order superfluid-Mott-insulator transition of spinor bosons in an optical lattice.
    Kimura T; Tsuchiya S; Kurihara S
    Phys Rev Lett; 2005 Mar; 94(11):110403. PubMed ID: 15903833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variational ansatz for the superfluid Mott-insulator transition in optical lattices.
    García-Ripoll JJ; Cirac J; Zoller P; Kollath C; Schollwöck U; von Delft J
    Opt Express; 2004 Jan; 12(1):42-54. PubMed ID: 19471510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase coherence, visibility, and the superfluid-Mott-insulator transition on one-dimensional optical lattices.
    Sengupta P; Rigol M; Batrouni GG; Denteneer PJ; Scalettar RT
    Phys Rev Lett; 2005 Nov; 95(22):220402. PubMed ID: 16384198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal Parity Order in the Two-Dimensional Mott Insulator.
    Fazzini S; Becca F; Montorsi A
    Phys Rev Lett; 2017 Apr; 118(15):157602. PubMed ID: 28452519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of a direct superfluid to mott insulator transition in disordered bose systems.
    Pollet L; Prokof'ev NV; Svistunov BV; Troyer M
    Phys Rev Lett; 2009 Oct; 103(14):140402. PubMed ID: 19905549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavily damped motion of one-dimensional Bose gases in an optical lattice.
    Danshita I; Clark CW
    Phys Rev Lett; 2009 Jan; 102(3):030407. PubMed ID: 19257333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entanglement spectrum of the two-dimensional Bose-Hubbard model.
    Alba V; Haque M; Läuchli AM
    Phys Rev Lett; 2013 Jun; 110(26):260403. PubMed ID: 23848849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Many-Body Multifractality throughout Bosonic Superfluid and Mott Insulator Phases.
    Lindinger J; Buchleitner A; Rodríguez A
    Phys Rev Lett; 2019 Mar; 122(10):106603. PubMed ID: 30932664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superfluid-insulator transition in a periodically driven optical lattice.
    Eckardt A; Weiss C; Holthaus M
    Phys Rev Lett; 2005 Dec; 95(26):260404. PubMed ID: 16486320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.
    Thomas CK; Barter TH; Leung TH; Okano M; Jo GB; Guzman J; Kimchi I; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2017 Sep; 119(10):100402. PubMed ID: 28949195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supersolid phases in the one-dimensional extended soft-core bosonic Hubbard model.
    Batrouni GG; Hébert F; Scalettar RT
    Phys Rev Lett; 2006 Aug; 97(8):087209. PubMed ID: 17026334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from a two-dimensional superfluid to a one-dimensional Mott insulator.
    Bergkvist S; Rosengren A; Saers R; Lundh E; Rehn M; Kastberg A
    Phys Rev Lett; 2007 Sep; 99(11):110401. PubMed ID: 17930414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quench in the 1D Bose-Hubbard model: topological defects and excitations from the Kosterlitz-Thouless phase transition dynamics.
    Dziarmaga J; Zurek WH
    Sci Rep; 2014 Aug; 4():5950. PubMed ID: 25091996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the superfluid-to-Mott insulator transition at the single-atom level.
    Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M
    Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase diagram of a disordered boson Hubbard model in two dimensions.
    Lee JW; Cha MC; Kim D
    Phys Rev Lett; 2001 Dec; 87(24):247006. PubMed ID: 11736535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetothermoelectric response at a superfluid-Mott-insulator transition.
    Bhaseen MJ; Green AG; Sondhi SL
    Phys Rev Lett; 2007 Apr; 98(16):166801. PubMed ID: 17501445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas.
    Fletcher RJ; Robert-de-Saint-Vincent M; Man J; Navon N; Smith RP; Viebahn KG; Hadzibabic Z
    Phys Rev Lett; 2015 Jun; 114(25):255302. PubMed ID: 26197133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.