These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17930918)

  • 1. New method for studying steady states in quantum impurity problems: the interacting resonant level model.
    Doyon B
    Phys Rev Lett; 2007 Aug; 99(7):076806. PubMed ID: 17930918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures.
    Boulat E; Saleur H; Schmitteckert P
    Phys Rev Lett; 2008 Oct; 101(14):140601. PubMed ID: 18851513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium density matrix in quantum open systems: generalization for simultaneous heat and charge steady-state transport.
    Ness H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062119. PubMed ID: 25615056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium Steady-State Transport in Quantum Impurity Models: A Thermofield and Quantum Quench Approach Using Matrix Product States.
    Schwarz F; Weymann I; von Delft J; Weichselbaum A
    Phys Rev Lett; 2018 Sep; 121(13):137702. PubMed ID: 30312054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium transport in quantum impurity models: the Bethe ansatz for open systems.
    Mehta P; Andrei N
    Phys Rev Lett; 2006 Jun; 96(21):216802. PubMed ID: 16803265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.
    Wu TP; Wang XQ; Guo GY; Anders F; Chung CH
    J Phys Condens Matter; 2016 May; 28(17):175003. PubMed ID: 27045815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems.
    Li Z; Tong N; Zheng X; Hou D; Wei J; Hu J; Yan Y
    Phys Rev Lett; 2012 Dec; 109(26):266403. PubMed ID: 23368590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full counting statistics in the self-dual interacting resonant level model.
    Carr ST; Bagrets DA; Schmitteckert P
    Phys Rev Lett; 2011 Nov; 107(20):206801. PubMed ID: 22181754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach.
    Arrigoni E; Knap M; von der Linden W
    Phys Rev Lett; 2013 Feb; 110(8):086403. PubMed ID: 23473180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferromagnetically coupled magnetic impurities in a quantum point contact.
    Song T; Ahn KH
    Phys Rev Lett; 2011 Feb; 106(5):057203. PubMed ID: 21405427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Out of equilibrium transport through an Anderson impurity: probing scaling laws within the equation of motion approach.
    Balseiro CA; Usaj G; Sánchez MJ
    J Phys Condens Matter; 2010 Oct; 22(42):425602. PubMed ID: 21403312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state currents through nanodevices: a scattering-states numerical renormalization-group approach to open quantum systems.
    Anders FB
    Phys Rev Lett; 2008 Aug; 101(6):066804. PubMed ID: 18764489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbative steady states of completely positive quantum master equations.
    Lee JS; Yeo J
    Phys Rev E; 2022 Nov; 106(5-1):054145. PubMed ID: 36559365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shot noise in the self-dual interacting resonant level model.
    Branschädel A; Boulat E; Saleur H; Schmitteckert P
    Phys Rev Lett; 2010 Oct; 105(14):146805. PubMed ID: 21230859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving Quantum Impurity Problems in and out of Equilibrium with the Variational Approach.
    Ashida Y; Shi T; Bañuls MC; Cirac JI; Demler E
    Phys Rev Lett; 2018 Jul; 121(2):026805. PubMed ID: 30085713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Anderson impurity model for efficient sampling of adiabatic potential energy surfaces of transition metal complexes.
    LaBute MX; Endres RG; Cox DL
    J Chem Phys; 2004 Nov; 121(17):8221-30. PubMed ID: 15511141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marginal Fermi liquid resonance induced by a quantum magnetic impurity in d-wave superconductors.
    Zhang GM; Hu H; Yu L
    Phys Rev Lett; 2001 Jan; 86(4):704-7. PubMed ID: 11177917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time renormalization group and charge fluctuations in quantum dots.
    Schoeller H; Konig J
    Phys Rev Lett; 2000 Apr; 84(16):3686-9. PubMed ID: 11019177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model.
    Kidon L; Wilner EY; Rabani E
    J Chem Phys; 2015 Dec; 143(23):234110. PubMed ID: 26696049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.