These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Partial dynamical symmetry at critical points of quantum phase transitions. Leviatan A Phys Rev Lett; 2007 Jun; 98(24):242502. PubMed ID: 17677959 [TBL] [Abstract][Full Text] [Related]
4. Critical-point symmetries in boson-fermion systems: the case of shape transitions in odd nuclei in a multiorbit model. Alonso CE; Arias JM; Vitturi A Phys Rev Lett; 2007 Feb; 98(5):052501. PubMed ID: 17358851 [TBL] [Abstract][Full Text] [Related]
5. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Iachello F Phys Rev Lett; 2001 Jul; 87(5):052502. PubMed ID: 11497764 [TBL] [Abstract][Full Text] [Related]
6. Probing the symmetries of the Dirac Hamiltonian with axially deformed scalar and vector potentials by similarity renormalization group. Guo JY; Chen SW; Niu ZM; Li DP; Liu Q Phys Rev Lett; 2014 Feb; 112(6):062502. PubMed ID: 24580689 [TBL] [Abstract][Full Text] [Related]
7. Scaling of entanglement close to a quantum phase transition. Osterloh A; Amico L; Falci G; Fazio R Nature; 2002 Apr; 416(6881):608-10. PubMed ID: 11948343 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions. Mkam Tchouobiap SE; Mashiyama H J Phys Condens Matter; 2011 Mar; 23(12):125902. PubMed ID: 21386368 [TBL] [Abstract][Full Text] [Related]
9. Correlating radii and electric monopole transitions of atomic nuclei. Zerguine S; Van Isacker P; Bouldjedri A; Heinze S Phys Rev Lett; 2008 Jul; 101(2):022502. PubMed ID: 18764177 [TBL] [Abstract][Full Text] [Related]
10. Symmetry breaking in the collinear phase of the J1-J2 Heisenberg model. Singh RR; Zheng W; Oitmaa J; Sushkov OP; Hamer CJ Phys Rev Lett; 2003 Jul; 91(1):017201. PubMed ID: 12906567 [TBL] [Abstract][Full Text] [Related]
11. Quantum phase transitions studied within the interacting boson model. Cejnar P; Jolie J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6237-47. PubMed ID: 11088296 [TBL] [Abstract][Full Text] [Related]
12. Symmetries and elasticity of nematic gels. Lubensky TC; Mukhopadhyay R; Radzihovsky L; Xing X Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011702. PubMed ID: 12241370 [TBL] [Abstract][Full Text] [Related]
14. Unconventional quantum criticality emerging as a new common language of transition-metal compounds, heavy-fermion systems, and organic conductors. Imada M; Misawa T; Yamaji Y J Phys Condens Matter; 2010 Apr; 22(16):164206. PubMed ID: 21386412 [TBL] [Abstract][Full Text] [Related]
15. Quantum fidelity for degenerate ground states in quantum phase transitions. Su YH; Hu BQ; Li SH; Cho SY Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032110. PubMed ID: 24125217 [TBL] [Abstract][Full Text] [Related]
16. Magnetic fluctuations at a field-induced quantum phase transition. Stockert O; Enderle M; Löhneysen HV Phys Rev Lett; 2007 Dec; 99(23):237203. PubMed ID: 18233405 [TBL] [Abstract][Full Text] [Related]
17. The Luttinger-Ward functional approach in the Eliashberg framework: a systematic derivation of scaling for thermodynamics near the quantum critical point. Benlagra A; Kim KS; Pépin C J Phys Condens Matter; 2011 Apr; 23(14):145601. PubMed ID: 21427476 [TBL] [Abstract][Full Text] [Related]
18. Modeling substorm dynamics of the magnetosphere: from self-organization and self-organized criticality to nonequilibrium phase transitions. Sitnov MI; Sharma AS; Papadopoulos K; Vassiliadis D Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016116. PubMed ID: 11800745 [TBL] [Abstract][Full Text] [Related]
19. Behavior of shell effects with the excitation energy in atomic nuclei. Egido JL; Robledo LM; Martin V Phys Rev Lett; 2000 Jul; 85(1):26-9. PubMed ID: 10991150 [TBL] [Abstract][Full Text] [Related]