These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 17931006)
1. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Marquardt F; Chen JP; Clerk AA; Girvin SM Phys Rev Lett; 2007 Aug; 99(9):093902. PubMed ID: 17931006 [TBL] [Abstract][Full Text] [Related]
2. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system. Yi Z; Li GX; Wu SP; Yang YP Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216 [TBL] [Abstract][Full Text] [Related]
3. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit. Peterson RW; Purdy TP; Kampel NS; Andrews RW; Yu PL; Lehnert KW; Regal CA Phys Rev Lett; 2016 Feb; 116(6):063601. PubMed ID: 26918990 [TBL] [Abstract][Full Text] [Related]
4. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Yang JY; Wang DY; Bai CH; Guan SY; Gao XY; Zhu AD; Wang HF Opt Express; 2019 Aug; 27(16):22855-22867. PubMed ID: 31510570 [TBL] [Abstract][Full Text] [Related]
5. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters. Nie W; Chen A; Lan Y Opt Express; 2015 Nov; 23(24):30970-84. PubMed ID: 26698728 [TBL] [Abstract][Full Text] [Related]
6. Cascaded optical transparency in multimode-cavity optomechanical systems. Fan L; Fong KY; Poot M; Tang HX Nat Commun; 2015 Jan; 6():5850. PubMed ID: 25586909 [TBL] [Abstract][Full Text] [Related]
7. Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. Qiu L; Shomroni I; Seidler P; Kippenberg TJ Phys Rev Lett; 2020 May; 124(17):173601. PubMed ID: 32412282 [TBL] [Abstract][Full Text] [Related]
8. Phonon Cooling by an Optomechanical Heat Pump. Dong Y; Bariani F; Meystre P Phys Rev Lett; 2015 Nov; 115(22):223602. PubMed ID: 26650304 [TBL] [Abstract][Full Text] [Related]
9. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom. Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052 [TBL] [Abstract][Full Text] [Related]
11. All-optical optomechanics: an optical spring mirror. Singh S; Phelps GA; Goldbaum DS; Wright EM; Meystre P Phys Rev Lett; 2010 Nov; 105(21):213602. PubMed ID: 21231305 [TBL] [Abstract][Full Text] [Related]
12. Tunable two-phonon higher-order sideband amplification in a quadratically coupled optomechanical system. Liu S; Yang WX; Shui T; Zhu Z; Chen AX Sci Rep; 2017 Dec; 7(1):17637. PubMed ID: 29247232 [TBL] [Abstract][Full Text] [Related]
13. Radiation Pressure Cooling as a Quantum Dynamical Process. He B; Yang L; Lin Q; Xiao M Phys Rev Lett; 2017 Jun; 118(23):233604. PubMed ID: 28644664 [TBL] [Abstract][Full Text] [Related]
14. Terahertz cavity optomechanics using a topological nanophononic superlattice. Chang H; Li Z; Lou W; Yao Q; Lai JM; Liu B; Ni H; Niu Z; Chang K; Zhang J Nanoscale; 2022 Sep; 14(36):13046-13052. PubMed ID: 36056707 [TBL] [Abstract][Full Text] [Related]
15. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Yuan M; Singh V; Blanter YM; Steele GA Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772 [TBL] [Abstract][Full Text] [Related]