BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17931504)

  • 1. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.
    Jabbarzadeh E; Nair LS; Khan YM; Deng M; Laurencin CT
    J Biomater Sci Polym Ed; 2007; 18(9):1141-52. PubMed ID: 17931504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
    Jabbarzadeh E; Deng M; Lv Q; Jiang T; Khan YM; Nair LS; Laurencin CT
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2187-96. PubMed ID: 22915492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
    Jabbarzadeh E; Jiang T; Deng M; Nair LS; Khan YM; Laurencin CT
    Biotechnol Bioeng; 2007 Dec; 98(5):1094-102. PubMed ID: 17497742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering.
    Zhang R; Ma PX
    Macromol Biosci; 2004 Feb; 4(2):100-11. PubMed ID: 15468200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.
    Cushnie EK; Khan YM; Laurencin CT
    J Biomed Mater Res A; 2010 Aug; 94(2):568-75. PubMed ID: 20198692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.
    Karp JM; Shoichet MS; Davies JE
    J Biomed Mater Res A; 2003 Feb; 64(2):388-96. PubMed ID: 12522827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(D,L-lactide-co-glycolide).
    Berkland C; Pack DW; Kim KK
    Biomaterials; 2004 Nov; 25(25):5649-58. PubMed ID: 15159081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of recombinant human bone morphogenetic protein-2 with poly(d,l lactide-co-glycolide) microspheres.
    Duggirala SS; Mehta RC; DeLuca PP
    Pharm Dev Technol; 1996 Apr; 1(1):11-9. PubMed ID: 9552326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of biomimetic mineralization to apply in bone regeneration.
    Jayasuriya AC; Shah C; Ebraheim NA; Jayatissa AH
    Biomed Mater; 2008 Mar; 3(1):015003. PubMed ID: 18458490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering.
    Mercier NR; Costantino HR; Tracy MA; Bonassar LJ
    Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F
    Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.