BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17931759)

  • 1. Mathematical relationships between bone density and mechanical properties: a literature review.
    Helgason B; Perilli E; Schileo E; Taddei F; Brynjólfsson S; Viceconti M
    Clin Biomech (Bristol, Avon); 2008 Feb; 23(2):135-46. PubMed ID: 17931759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate estimation of bone density improves the accuracy of subject-specific finite element models.
    Schileo E; Dall'ara E; Taddei F; Malandrino A; Schotkamp T; Baleani M; Viceconti M
    J Biomech; 2008 Aug; 41(11):2483-91. PubMed ID: 18606417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-specific finite element models can accurately predict strain levels in long bones.
    Schileo E; Taddei F; Malandrino A; Cristofolini L; Viceconti M
    J Biomech; 2007; 40(13):2982-9. PubMed ID: 17434172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone.
    Austman RL; Milner JS; Holdsworth DW; Dunning CE
    J Biomech; 2008 Nov; 41(15):3171-6. PubMed ID: 18922532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual density-elasticity relationships improve accuracy of subject-specific finite element models of human femurs.
    Eberle S; Göttlinger M; Augat P
    J Biomech; 2013 Sep; 46(13):2152-7. PubMed ID: 23895895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of side-artifacts on the elastic modulus of trabecular bone.
    Un K; Bevill G; Keaveny TM
    J Biomech; 2006; 39(11):1955-63. PubMed ID: 16824533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of density-elasticity relationships for finite element modeling of human pelvic bone by modal analysis.
    Scholz R; Hoffmann F; von Sachsen S; Drossel WG; Klöhn C; Voigt C
    J Biomech; 2013 Oct; 46(15):2667-73. PubMed ID: 24001928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones.
    Eberle S; Göttlinger M; Augat P
    Med Eng Phys; 2013 Jul; 35(7):875-83. PubMed ID: 23010570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the viscoelastic effect in a bone remodeling model.
    Baïotto S; Zidi M
    Biomech Model Mechanobiol; 2009 Apr; 8(2):129-39. PubMed ID: 18357479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical estimation of bone density and elastic constants distribution in a human mandible.
    Reina JM; García-Aznar JM; Domínguez J; Doblaré M
    J Biomech; 2007; 40(4):828-36. PubMed ID: 16687149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations.
    Matsuura M; Eckstein F; Lochmüller EM; Zysset PK
    Biomech Model Mechanobiol; 2008 Feb; 7(1):27-42. PubMed ID: 17235622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-axial mechanical properties of human trabecular bone.
    Rincón-Kohli L; Zysset PK
    Biomech Model Mechanobiol; 2009 Jun; 8(3):195-208. PubMed ID: 18695984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.