BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17931892)

  • 1. Compensatory neural activity distinguishes different patterns of normal cognitive aging.
    Riis JL; Chong H; Ryan KK; Wolk DA; Rentz DM; Holcomb PJ; Daffner KR
    Neuroimage; 2008 Jan; 39(1):441-54. PubMed ID: 17931892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does compensatory neural activity survive old-old age?
    Daffner KR; Sun X; Tarbi EC; Rentz DM; Holcomb PJ; Riis JL
    Neuroimage; 2011 Jan; 54(1):427-38. PubMed ID: 20696255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in attention to novelty among cognitively high performing adults.
    Daffner KR; Ryan KK; Williams DM; Budson AE; Rentz DM; Wolk DA; Holcomb PJ
    Biol Psychol; 2006 Apr; 72(1):67-77. PubMed ID: 16198046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive status impacts age-related changes in attention to novel and target events in normal adults.
    Daffner KR; Chong H; Riis J; Rentz DM; Wolk DA; Budson AE; Holcomb PJ
    Neuropsychology; 2007 May; 21(3):291-300. PubMed ID: 17484592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related differences in novelty and target processing among cognitively high performing adults.
    Daffner KR; Ryan KK; Williams DM; Budson AE; Rentz DM; Scinto LF; Holcomb PJ
    Neurobiol Aging; 2005 Oct; 26(9):1283-95. PubMed ID: 16054727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased responsiveness to novelty is associated with successful cognitive aging.
    Daffner KR; Ryan KK; Williams DM; Budson AE; Rentz DM; Wolk DA; Holcomb PJ
    J Cogn Neurosci; 2006 Oct; 18(10):1759-73. PubMed ID: 17014379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study.
    Malcolm BR; Foxe JJ; Butler JS; De Sanctis P
    Neuroimage; 2015 Aug; 117():230-42. PubMed ID: 25988225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying age- and performance-related differences in working memory.
    Daffner KR; Chong H; Sun X; Tarbi EC; Riis JL; McGinnis SM; Holcomb PJ
    J Cogn Neurosci; 2011 Jun; 23(6):1298-314. PubMed ID: 20617886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological correlates of selective attention: a lifespan comparison.
    Mueller V; Brehmer Y; von Oertzen T; Li SC; Lindenberger U
    BMC Neurosci; 2008 Jan; 9():18. PubMed ID: 18237433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related differences in enhancement and suppression of neural activity underlying selective attention in matched young and old adults.
    Haring AE; Zhuravleva TY; Alperin BR; Rentz DM; Holcomb PJ; Daffner KR
    Brain Res; 2013 Mar; 1499():69-79. PubMed ID: 23313874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stroop task performance across the lifespan: High cognitive reserve in older age is associated with enhanced proactive and reactive interference control.
    Gajewski PD; Falkenstein M; Thönes S; Wascher E
    Neuroimage; 2020 Feb; 207():116430. PubMed ID: 31805383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preserved executive function in high-performing elderly is driven by large-scale recruitment of prefrontal cortical mechanisms.
    De Sanctis P; Gomez-Ramirez M; Sehatpour P; Wylie GR; Foxe JJ
    Hum Brain Mapp; 2009 Dec; 30(12):4198-214. PubMed ID: 19572310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual target processing in high- and low-performing older subjects indexed by P3 component.
    Lorenzo-López L; Amenedo E; Pazo-Alvarez P; Cadaveira F
    Neurophysiol Clin; 2007; 37(2):53-61. PubMed ID: 17540288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory selective attention in middle-aged and elderly subjects: an event-related brain potential study.
    Woods DL
    Electroencephalogr Clin Neurophysiol; 1992; 84(5):456-68. PubMed ID: 1382955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cognitive framework for understanding and improving interference resolution in the brain.
    Mishra J; Anguera JA; Ziegler DA; Gazzaley A
    Prog Brain Res; 2013; 207():351-77. PubMed ID: 24309262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs.
    Nashiro K; Qin S; O'Connell MA; Basak C
    Neuroimage; 2018 May; 172():146-161. PubMed ID: 29414492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Information processing becomes slower and predominantly serial in aging: Characterization of response-related brain potentials in an auditory-visual distraction-attention task.
    Cid-Fernández S; Lindín M; Díaz F
    Biol Psychol; 2016 Jan; 113():12-23. PubMed ID: 26589359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related spatiotemporal reorganization during response inhibition.
    Hong X; Sun J; Bengson JJ; Tong S
    Int J Psychophysiol; 2014 Sep; 93(3):371-80. PubMed ID: 24905017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive training and selective attention in the aging brain: an electrophysiological study.
    O'Brien JL; Edwards JD; Maxfield ND; Peronto CL; Williams VA; Lister JJ
    Clin Neurophysiol; 2013 Nov; 124(11):2198-208. PubMed ID: 23770088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Reference Ability Neural Network Study: motivation, design, and initial feasibility analyses.
    Stern Y; Habeck C; Steffener J; Barulli D; Gazes Y; Razlighi Q; Shaked D; Salthouse T
    Neuroimage; 2014 Dec; 103():139-151. PubMed ID: 25245813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.