These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17932153)

  • 41. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Pinniger GJ; Roots H; Offer GW
    J Physiol; 2007 Nov; 585(Pt 1):263-77. PubMed ID: 17916609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stiffness of frog muscle fibres during rise of tension and relaxation in fixed-end or length-clamped tetani.
    Cecchi G; Colomo F; Lombardi V; Piazzesi G
    Pflugers Arch; 1987 Jun; 409(1-2):39-46. PubMed ID: 3497383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Force enhancement above the initial isometric force on the descending limb of the force-length relationship.
    Schachar R; Herzog W; Leonard TR
    J Biomech; 2002 Oct; 35(10):1299-306. PubMed ID: 12231275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tension responses to sudden length change in stimulated frog muscle fibres near slack length.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Moderate fatigue studied at great sarcomere lengths in frog single muscle fibres.
    Lou F; Sun YB
    Acta Physiol Scand; 1994 Oct; 152(2):163-72. PubMed ID: 7839860
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions.
    Lee EJ; Herzog W
    J Appl Physiol (1985); 2008 Aug; 105(2):457-62. PubMed ID: 18499781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tension and stiffness of frog muscle fibres at full filament overlap.
    Bagni MA; Cecchi G; Colomo F; Poggesi C
    J Muscle Res Cell Motil; 1990 Oct; 11(5):371-7. PubMed ID: 2266164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.
    Mutungi G; Ranatunga KW
    J Muscle Res Cell Motil; 2001; 22(2):175-84. PubMed ID: 11519740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Residual force enhancement and force depression in human single muscle fibres.
    Pinnell RAM; Mashouri P; Mazara N; Weersink E; Brown SHM; Power GA
    J Biomech; 2019 Jun; 91():164-169. PubMed ID: 31155213
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres.
    Sugi H; Tsuchiya T
    J Physiol; 1988 Dec; 407():215-29. PubMed ID: 3256616
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres.
    Seow CY; Shroff SG; Ford LE
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):149-64. PubMed ID: 9175000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibres.
    Linari M; Lucii L; Reconditi M; Casoni ME; Amenitsch H; Bernstorff S; Piazzesi G; Lombardi V
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):589-96. PubMed ID: 10922010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2004 Oct; 97(4):1395-400. PubMed ID: 15194676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of passive force in single skeletal muscle fibres.
    Rassier DE; Lee EJ; Herzog W
    Biol Lett; 2005 Sep; 1(3):342-5. PubMed ID: 17148202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cross-bridge detachment and attachment following a step stretch imposed on active single frog muscle fibres.
    Piazzesi G; Linari M; Reconditi M; Vanzi F; Lombardi V
    J Physiol; 1997 Jan; 498 ( Pt 1)(Pt 1):3-15. PubMed ID: 9023764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical properties of frog muscle fibres at rest and during twitch contraction.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    J Electromyogr Kinesiol; 1999 Apr; 9(2):77-86. PubMed ID: 10098708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Force enhancement following stretch in a single sarcomere.
    Leonard TR; DuVall M; Herzog W
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1398-401. PubMed ID: 20844251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.