BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17932585)

  • 21. Chronic inflammation: A key role in degeneration of bicuspid aortic valve.
    Manno G; Bentivegna R; Morreale P; Nobile D; Santangelo A; Novo S; Novo G
    J Mol Cell Cardiol; 2019 May; 130():59-64. PubMed ID: 30885747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathology of calcific aortic stenosis.
    Ladich E; Nakano M; Carter-Monroe N; Virmani R
    Future Cardiol; 2011 Sep; 7(5):629-42. PubMed ID: 21929343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipoprotein(a) and calcific aortic valve stenosis: A systematic review.
    Guddeti RR; Patil S; Ahmed A; Sharma A; Aboeata A; Lavie CJ; Alla VM
    Prog Cardiovasc Dis; 2020; 63(4):496-502. PubMed ID: 32526213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of degeneration of native and bioprosthetic aortic valves: issue-related particularities of diabetes mellitus.
    Yeghiazaryan K; Bauriedel G; Schild HH; Golubnitschaja O
    Infect Disord Drug Targets; 2008 Jun; 8(2):88-99. PubMed ID: 18537704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Research progress on pharmacotherapy of calcific aortic valve disease].
    DU M; Ma G; Shi Y
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 May; 45(4):432-438. PubMed ID: 27868419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonrheumatic calcific aortic stenosis: an overview from basic science to pharmacological prevention.
    Parolari A; Loardi C; Mussoni L; Cavallotti L; Camera M; Biglioli P; Tremoli E; Alamanni F
    Eur J Cardiothorac Surg; 2009 Mar; 35(3):493-504. PubMed ID: 19162497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphologic findings in explanted Mitroflow pericardial bioprosthetic valves.
    McGonagle-Wolff K; Schoen FJ
    Am J Cardiol; 1992 Jul; 70(2):263-4. PubMed ID: 1626518
    [No Abstract]   [Full Text] [Related]  

  • 28. Determinants of occurrence of aortic sclerosis in an aging population.
    Ngo DT; Sverdlov AL; Willoughby SR; Nightingale AK; Chirkov YY; McNeil JJ; Horowitz JD
    JACC Cardiovasc Imaging; 2009 Aug; 2(8):919-27. PubMed ID: 19679278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural valve deterioration and mode of failure of stentless bioprosthetic valves.
    Della Barbera M; Pettenazzo E; Livi U; Mangino D; Gerosa G; Bottio T; Basso C; Valente M; Thiene G
    Cardiovasc Pathol; 2021; 51():107301. PubMed ID: 33130282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation.
    Passmore M; Nataatmadja M; Fung YL; Pearse B; Gabriel S; Tesar P; Fraser JF
    Eur J Cardiothorac Surg; 2015 Sep; 48(3):e20-9. PubMed ID: 26273067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association between circulating oxidised low-density lipoprotein and fibrocalcific remodelling of the aortic valve in aortic stenosis.
    Côté C; Pibarot P; Després JP; Mohty D; Cartier A; Arsenault BJ; Couture C; Mathieu P
    Heart; 2008 Sep; 94(9):1175-80. PubMed ID: 17932090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcific aortic valve disease: is it another face of atherosclerosis?
    Sathyamurthy I; Alex S
    Indian Heart J; 2015; 67(5):503-6. PubMed ID: 26432749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the structural features of symptomatic calcific aortic valve stenosis: A broad-spectrum clinico-pathologic study in 236 consecutive surgical cases.
    Galli D; Manuguerra R; Monaco R; Manotti L; Goldoni M; Becchi G; Carubbi C; Vignali G; Cucurachi N; Gherli T; Nicolini F; Lorusso R; Vitale M; Corradi D
    Int J Cardiol; 2017 Feb; 228():364-374. PubMed ID: 27866029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The lipid theory in the pathogenesis of calcific aortic stenosis.
    Parisi V; Leosco D; Ferro G; Bevilacqua A; Pagano G; de Lucia C; Perrone Filardi P; Caruso A; Rengo G; Ferrara N
    Nutr Metab Cardiovasc Dis; 2015 Jun; 25(6):519-25. PubMed ID: 25816732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathology and etiology of 110 consecutively removed aortic valves.
    Chuangsuwanich T; Warnnissorn M; Leksrisakul P; Laksanabunsong P; Thongcharoen P; Sahasakul Y
    J Med Assoc Thai; 2004 Aug; 87(8):921-34. PubMed ID: 15471297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aortic valve sclerosis as a marker of active atherosclerosis.
    Branch KR; O'Brien KD; Otto CM
    Curr Cardiol Rep; 2002 Mar; 4(2):111-7. PubMed ID: 11827633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HISTOLOGICAL AND IMMUNOHISTOCHEMICAL STUDIES OF ATHEROSCLEROTIC AND SENILE CALCIFIC AORTIC VALVE STENOSIS.
    Saladze T; Gogiashvili L; Tsagareli Z; Bakhutashvili Z; Kavtaradze T
    Georgian Med News; 2015; (244-245):94-9. PubMed ID: 26177142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A metric for the stiffness of calcified aortic valves using a combined computational and experimental approach.
    Maleki H; Shahriari S; Durand LG; Labrosse MR; Kadem L
    Med Biol Eng Comput; 2014 Jan; 52(1):1-8. PubMed ID: 24037347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of calcific aortic valve disease: Do we know enough for new clinical trials?
    Kostyunin AE; Yuzhalin AE; Ovcharenko EA; Kutikhin AG
    J Mol Cell Cardiol; 2019 Jul; 132():189-209. PubMed ID: 31136747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties.
    Bogdanova M; Zabirnyk A; Malashicheva A; Enayati KZ; Karlsen TA; Kaljusto ML; Kvitting JP; Dissen E; Sullivan GJ; Kostareva A; Stensløkken KO; Rutkovskiy A; Vaage J
    Sci Rep; 2019 Sep; 9(1):12934. PubMed ID: 31506459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.