BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17932809)

  • 1. Recent advances in the development of oncolytic HSV-1 vectors: 'arming' of HSV-1 vectors and application of bacterial artificial chromosome technology for their construction.
    Jeyaretna DS; Kuroda T
    Curr Opin Mol Ther; 2007 Oct; 9(5):447-66. PubMed ID: 17932809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system.
    Fukuhara H; Ino Y; Kuroda T; Martuza RL; Todo T
    Cancer Res; 2005 Dec; 65(23):10663-8. PubMed ID: 16322208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flip-Flop HSV-BAC: bacterial artificial chromosome based system for rapid generation of recombinant herpes simplex virus vectors using two independent site-specific recombinases.
    Kuroda T; Martuza RL; Todo T; Rabkin SD
    BMC Biotechnol; 2006 Sep; 6():40. PubMed ID: 16995942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncolytic herpes simplex virus engineering and preparation.
    Agarwalla PK; Aghi MK
    Methods Mol Biol; 2012; 797():1-19. PubMed ID: 21948465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models.
    Terada K; Wakimoto H; Tyminski E; Chiocca EA; Saeki Y
    Gene Ther; 2006 Apr; 13(8):705-14. PubMed ID: 16421599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy.
    Ino Y; Saeki Y; Fukuhara H; Todo T
    Clin Cancer Res; 2006 Jan; 12(2):643-52. PubMed ID: 16428511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of HSV-1 to an oncolytic virus.
    Nakashima H; Chiocca EA
    Methods Mol Biol; 2014; 1144():117-27. PubMed ID: 24671680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Oncolytic Herpes Simplex Virus with Therapeutic Genes of Interest.
    Kahramanian A; Kuroda T; Wakimoto H
    Methods Mol Biol; 2019; 1937():177-188. PubMed ID: 30706396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncolytic HSV armed with platelet factor 4, an antiangiogenic agent, shows enhanced efficacy.
    Liu TC; Zhang T; Fukuhara H; Kuroda T; Todo T; Martuza RL; Rabkin SD; Kurtz A
    Mol Ther; 2006 Dec; 14(6):789-97. PubMed ID: 17045531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes.
    Horsburgh BC; Hubinette MM; Qiang D; MacDonald ML; Tufaro F
    Gene Ther; 1999 May; 6(5):922-30. PubMed ID: 10505118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progess on research of herpes simplex virus type 1 mutants for cancer therapy].
    Long Y; Mi Y; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1446-9. PubMed ID: 19166228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of tumor-specific transgene expression.
    Robinson M; Ge Y; Ko D; Yendluri S; Laflamme G; Hawkins L; Jooss K
    Cancer Gene Ther; 2008 Jan; 15(1):9-17. PubMed ID: 17853920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncolytic virus therapy using genetically engineered herpes simplex viruses.
    Todo T
    Front Biosci; 2008 Jan; 13():2060-4. PubMed ID: 17981691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a novel foreign gene delivery system combining an HSV amplicon with an attenuated replication-competent virus, HSV-1 HF10.
    Zhang L; Daikoku T; Ohtake K; Ohtsuka J; Nawa A; Kudoh A; Iwahori S; Isomura H; Nishiyama Y; Tsurumi T
    J Virol Methods; 2006 Nov; 137(2):177-83. PubMed ID: 16854473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of HSV-1 BACs and their use for packaging of HSV-1-based amplicon vectors.
    Heister TG; Vögtlin A; Müller L; Heid I; Fraefel C
    Methods Mol Biol; 2004; 256():241-56. PubMed ID: 15024170
    [No Abstract]   [Full Text] [Related]  

  • 16. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes.
    Schmeisser F; Weir JP
    BMC Biotechnol; 2007 May; 7():22. PubMed ID: 17501993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Herpes simplex virus-based vectors for the treatment of cancer and neurodegenerative disease.
    Latchman DS
    Curr Opin Mol Ther; 2005 Oct; 7(5):415-8. PubMed ID: 16248276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome.
    Cottingham MG; Gilbert SC
    J Virol Methods; 2010 Sep; 168(1-2):233-6. PubMed ID: 20417665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes.
    Hermiston TW; Kuhn I
    Cancer Gene Ther; 2002 Dec; 9(12):1022-35. PubMed ID: 12522441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HSV-1-based amplicon vectors: design and applications.
    Epstein AL
    Gene Ther; 2005 Oct; 12 Suppl 1():S154-8. PubMed ID: 16231049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.