These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 17932917)

  • 1. Prediction of RNA binding sites in a protein using SVM and PSSM profile.
    Kumar M; Gromiha MM; Raghava GP
    Proteins; 2008 Apr; 71(1):189-94. PubMed ID: 17932917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DPROT: prediction of disordered proteins using evolutionary information.
    Sethi D; Garg A; Raghava GP
    Amino Acids; 2008 Oct; 35(3):599-605. PubMed ID: 18425404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile.
    Verma R; Varshney GC; Raghava GP
    Amino Acids; 2010 Jun; 39(1):101-10. PubMed ID: 19908123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles.
    Wang Y; Xue Z; Shen G; Xu J
    Amino Acids; 2008 Aug; 35(2):295-302. PubMed ID: 18235992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods.
    Natt NK; Kaur H; Raghava GP
    Proteins; 2004 Jul; 56(1):11-8. PubMed ID: 15162482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of accurate predictors for DNA-binding sites in proteins using hybrid SVM-PSSM method.
    Ho SY; Yu FC; Chang CY; Huang HL
    Biosystems; 2007; 90(1):234-41. PubMed ID: 17275170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Better prediction of the location of alpha-turns in proteins with support vector machine.
    Wang Y; Xue Z; Xu J
    Proteins; 2006 Oct; 65(1):49-54. PubMed ID: 16894602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RISP: a web-based server for prediction of RNA-binding sites in proteins.
    Tong J; Jiang P; Lu ZH
    Comput Methods Programs Biomed; 2008 May; 90(2):148-53. PubMed ID: 18261823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins.
    Kuznetsov IB; Gou Z; Li R; Hwang S
    Proteins; 2006 Jul; 64(1):19-27. PubMed ID: 16568445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of protein-interacting nucleotides in a RNA sequence using composition profile of tri-nucleotides.
    Panwar B; Raghava GP
    Genomics; 2015 Apr; 105(4):197-203. PubMed ID: 25640448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment.
    Kaur H; Raghava GP
    Protein Sci; 2003 May; 12(5):923-9. PubMed ID: 12717015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of GTP interacting residues, dipeptides and tripeptides in a protein from its evolutionary information.
    Chauhan JS; Mishra NK; Raghava GP
    BMC Bioinformatics; 2010 Jun; 11():301. PubMed ID: 20525281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BTXpred: prediction of bacterial toxins.
    Saha S; Raghava GP
    In Silico Biol; 2007; 7(4-5):405-12. PubMed ID: 18391233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information.
    Wang Y; Xue ZD; Shi XH; Xu J
    Biochem Biophys Res Commun; 2006 Sep; 347(3):574-80. PubMed ID: 16844090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.