BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17932918)

  • 21. TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins.
    Randall A; Cheng J; Sweredoski M; Baldi P
    Bioinformatics; 2008 Feb; 24(4):513-20. PubMed ID: 18006547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence-based protein domain boundary prediction using BP neural network with various property profiles.
    Ye L; Liu T; Wu Z; Zhou R
    Proteins; 2008 Apr; 71(1):300-7. PubMed ID: 17932915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicted residue-residue contacts can help the scoring of 3D models.
    Tress ML; Valencia A
    Proteins; 2010 Jun; 78(8):1980-91. PubMed ID: 20408174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles.
    Kundrotas PJ; Lensink MF; Alexov E
    Int J Biol Macromol; 2008 Aug; 43(2):198-208. PubMed ID: 18572239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution and similarity evaluation of protein structures in contact map space.
    Gupta N; Mangal N; Biswas S
    Proteins; 2005 May; 59(2):196-204. PubMed ID: 15726585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid assessment of contact-dependent secondary structure propensity: relevance to amyloidogenic sequences.
    Yoon S; Welsh WJ
    Proteins; 2005 Jul; 60(1):110-7. PubMed ID: 15849755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of intramolecular contact predictions for CASP7.
    Izarzugaza JM; Graña O; Tress ML; Valencia A; Clarke ND
    Proteins; 2007; 69 Suppl 8():152-8. PubMed ID: 17671976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of alpha-helices in proteins based on thermodynamic parameters from solution chemistry.
    Qian H
    J Mol Biol; 1996 Mar; 256(4):663-6. PubMed ID: 8642588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating quality of template-based protein models by alignment stability.
    Chen H; Kihara D
    Proteins; 2008 May; 71(3):1255-74. PubMed ID: 18041762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions.
    Frenz CM
    Proteins; 2005 May; 59(2):147-51. PubMed ID: 15723345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurements of protein sequence-structure correlations.
    Crooks GE; Wolfe J; Brenner SE
    Proteins; 2004 Dec; 57(4):804-10. PubMed ID: 15476257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for protein accessibility prediction based on residue types and conformational states.
    Zarei R; Arab S; Sadeghi M
    Comput Biol Chem; 2007 Oct; 31(5-6):384-8. PubMed ID: 17888743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties.
    Dor O; Zhou Y
    Proteins; 2007 Jul; 68(1):76-81. PubMed ID: 17397056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of disordered regions in proteins from position specific score matrices.
    Jones DT; Ward JJ
    Proteins; 2003; 53 Suppl 6():573-8. PubMed ID: 14579348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma-turn types prediction in proteins using the two-stage hybrid neural discriminant model.
    Jahandideh S; Hoseini S; Jahandideh M; Hoseini A; Disfani FM
    J Theor Biol; 2009 Aug; 259(3):517-22. PubMed ID: 19409396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs.
    Zou L; Wang Z; Huang J
    J Genet Genomics; 2007 Dec; 34(12):1080-7. PubMed ID: 18155620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein secondary structure by an enhanced neural network.
    Vieth M; Koliński A
    Acta Biochim Pol; 1991; 38(3):335-51. PubMed ID: 1799113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.