These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17933342)

  • 1. A salicylate-induced change in the protein composition and content in pea roots.
    Yakovleva VG; Tarchevsky IA; Egorova AM
    Dokl Biochem Biophys; 2007; 415():228-31. PubMed ID: 17933342
    [No Abstract]   [Full Text] [Related]  

  • 2. Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves.
    Tarchevsky IA; Yakovleva VG; Egorova AM
    Biochemistry (Mosc); 2010 May; 75(5):590-7. PubMed ID: 20632938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of the effect of methyl jasmonate on pea seedling roots.
    Yakovleva VG; Egorova AM; Tarchevsky IA
    Dokl Biochem Biophys; 2013; 449():90-3. PubMed ID: 23657655
    [No Abstract]   [Full Text] [Related]  

  • 4. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.
    Badowiec A; Swigonska S; Weidner S
    Plant Physiol Biochem; 2013 Oct; 71():315-24. PubMed ID: 24012770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of changes in pea roots caused by the apoptosis-inducing concentration of salicylic acid.
    Tarchevsky IA; Yakovleva VG; Egorova AM
    Dokl Biochem Biophys; 2008; 422():274-8. PubMed ID: 19024557
    [No Abstract]   [Full Text] [Related]  

  • 6. [Salicylate-induced modification of plant proteomes (review)].
    Tarchevskiĭ IA; Iakovleva VG; Egorova AM
    Prikl Biokhim Mikrobiol; 2010; 46(3):263-75. PubMed ID: 20586279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylate-Induced Chitinases in Pea Roots.
    Egorova AM; Wielsch N; Tarchevsky IA
    Dokl Biochem Biophys; 2020 Sep; 494(1):240-243. PubMed ID: 33119825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of calcium and rhizobial infections (Rhizobium leguminosarum) on the dynamics of nitric oxide (NO) content in roots of etiolated pea (Pisum sativum L.) seedlings].
    Glian'ko AK; Ishchenko AA; Stepanov AV
    Prikl Biokhim Mikrobiol; 2014; 50(6):587-92. PubMed ID: 25726667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum).
    Angeles Castillejo M; Amiour N; Dumas-Gaudot E; Rubiales D; Jorrín JV
    Phytochemistry; 2004 Jun; 65(12):1817-28. PubMed ID: 15276440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea.
    Cruchaga S; Artola E; Lasa B; Ariz I; Irigoyen I; Moran JF; Aparicio-Tejo PM
    J Plant Physiol; 2011 Mar; 168(4):329-36. PubMed ID: 20932600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.
    Castillejo MÁ; Bani M; Rubiales D
    Phytochemistry; 2015 Jul; 115():44-58. PubMed ID: 25672548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Level nitric oxide (NO) and growth of roots of etiolated pea seedlings].
    Glian'ko AK; Ishchenko AA
    Izv Akad Nauk Ser Biol; 2013; (6):689-95. PubMed ID: 25518555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological changes of green pea (Pisum sativum L.) by selenium enrichment.
    Garousi F; Kovács B; Domokos-Szabolcsy É; Veres S
    Acta Biol Hung; 2017 Mar; 68(1):60-72. PubMed ID: 28322089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).
    Pandey N; Singh GK
    J Environ Biol; 2012 Mar; 33(2):201-6. PubMed ID: 23033681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite profiling of pea roots in response to phosphate availability.
    Laparre J; Balzergue C; Rochange S; Ludwiczak P; Letisse F; Portais JC; Bécard G; Puech-Pages V
    Plant Signal Behav; 2011 Jun; 6(6):837-9. PubMed ID: 21455026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad).
    Dixit V; Pandey V; Shyam R
    J Exp Bot; 2001 May; 52(358):1101-9. PubMed ID: 11432926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of traumatic acid on tyrosine phosphorylation of proteins in pea seedlings.
    Asafova EV; Asaleeva GA; Yakovleva VG; Tarchevskii IA
    Dokl Biochem Biophys; 2005; 405():426-8. PubMed ID: 16480144
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of calcium on RNA content in meristematic cells of pea (Pisum sativum L.) roots treated with toxic metals.
    Lbik-Nowak A; Gabara B
    Folia Histochem Cytobiol; 1997; 35(4):231-5. PubMed ID: 9619424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients.
    Tiwari KK; Dwivedi S; Singh NK; Rai UN; Tripathi RD
    J Environ Biol; 2009 May; 30(3):389-94. PubMed ID: 20120464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidative defense to lead stress in subcellular compartments of pea root cells.
    Malecka A; Jarmuszkiewicz W; Tomaszewska B
    Acta Biochim Pol; 2001; 48(3):687-98. PubMed ID: 11833777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.