BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 17933461)

  • 1. Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study.
    Quintelas C; Fernandes B; Castro J; Figueiredo H; Tavares T
    J Hazard Mater; 2008 May; 153(1-2):799-809. PubMed ID: 17933461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of organic compounds by a biofilm supported on GAC: modelling of batch and column data.
    Quintelas C; Silva B; Figueiredo H; Tavares T
    Biodegradation; 2010 Jun; 21(3):379-92. PubMed ID: 19882356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC.
    Quintelas C; Fonseca B; Silva B; Figueiredo H; Tavares T
    Bioresour Technol; 2009 Jan; 100(1):220-6. PubMed ID: 18565747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions.
    Demirbas E; Kobya M; Konukman AE
    J Hazard Mater; 2008 Jun; 154(1-3):787-94. PubMed ID: 18068295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters.
    Aksu Z; Balibek E
    J Hazard Mater; 2007 Jun; 145(1-2):210-20. PubMed ID: 17188810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption of Cr (VI) using a bacterial biofilm supported on granular activated carbon and on zeolite.
    Lameiras S; Quintelas C; Tavares T
    Bioresour Technol; 2008 Mar; 99(4):801-6. PubMed ID: 17368891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.
    Mohan D; Singh KP; Singh VK
    J Hazard Mater; 2006 Jul; 135(1-3):280-95. PubMed ID: 16442720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies.
    Nemr AE
    J Hazard Mater; 2009 Jan; 161(1):132-41. PubMed ID: 18485590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of Cr(VI) by native isolate of Lyngbya putealis (HH-15) in the presence of salts.
    Kiran B; Kaushik A; Kaushik CP
    J Hazard Mater; 2007 Mar; 141(3):662-7. PubMed ID: 16956722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus.
    Ertugay N; Bayhan YK
    J Hazard Mater; 2008 Jun; 154(1-3):432-9. PubMed ID: 18078714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of chromium(VI) on pomace--an olive oil industry waste: batch and column studies.
    Malkoc E; Nuhoglu Y; Dundar M
    J Hazard Mater; 2006 Nov; 138(1):142-51. PubMed ID: 16844293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of chromium from industrial waste by using eucalyptus bark.
    Sarin V; Pant KK
    Bioresour Technol; 2006 Jan; 97(1):15-20. PubMed ID: 16154498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption and elution of chromium from immobilized Bacillus coagulans biomass.
    Srinath T; Garg SK; Ramteke PW
    Indian J Exp Biol; 2003 Sep; 41(9):986-90. PubMed ID: 15242291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell.
    Pehlivan E; Altun T
    J Hazard Mater; 2008 Jun; 155(1-2):378-84. PubMed ID: 18179865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.
    Vilar VJ; Botelho CM; Boaventura RA
    J Hazard Mater; 2007 Nov; 149(3):643-9. PubMed ID: 17507158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.
    Mohan D; Rajput S; Singh VK; Steele PH; Pittman CU
    J Hazard Mater; 2011 Apr; 188(1-3):319-33. PubMed ID: 21354700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.
    Vivek Narayanan N; Ganesan M
    J Hazard Mater; 2009 Jan; 161(1):575-80. PubMed ID: 18485589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste.
    Fahim NF; Barsoum BN; Eid AE; Khalil MS
    J Hazard Mater; 2006 Aug; 136(2):303-9. PubMed ID: 16442717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.
    Amuda OS; Adelowo FE; Ologunde MO
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):184-92. PubMed ID: 19022632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Cr(VI) from industrial wastewaters by adsorption Part I: determination of optimum conditions.
    Uysal M; Ar I
    J Hazard Mater; 2007 Oct; 149(2):482-91. PubMed ID: 17513041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.