BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17933468)

  • 1. Phosphatidylglucoside: a new marker for lipid rafts.
    Nagatsuka Y; Hirabayashi Y
    Biochim Biophys Acta; 2008 Mar; 1780(3):405-9. PubMed ID: 17933468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylglucoside: its structure, thermal behavior, and domain formation in plasma membranes.
    Takahashi H; Hayakawa T; Murate M; Greimel P; Nagatsuka Y; Kobayashi T; Hirabayashi Y
    Chem Phys Lipids; 2012 Feb; 165(2):197-206. PubMed ID: 22227109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid rafts enriched in phosphatidylglucoside direct astroglial differentiation by regulating tyrosine kinase activity of epidermal growth factor receptors.
    Kinoshita MO; Furuya S; Ito S; Shinoda Y; Yamazaki Y; Greimel P; Ito Y; Hashikawa T; Machida T; Nagatsuka Y; Hirabayashi Y
    Biochem J; 2009 May; 419(3):565-75. PubMed ID: 19170657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatidylglucoside exists as a single molecular species with saturated fatty acyl chains in developing astroglial membranes.
    Nagatsuka Y; Horibata Y; Yamazaki Y; Kinoshita M; Shinoda Y; Hashikawa T; Koshino H; Nakamura T; Hirabayashi Y
    Biochemistry; 2006 Jul; 45(29):8742-50. PubMed ID: 16846217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidylglucoside forms specific lipid domains on the outer leaflet of the plasma membrane.
    Murate M; Hayakawa T; Ishii K; Inadome H; Greimel P; Watanabe M; Nagatsuka Y; Ito K; Ito Y; Takahashi H; Hirabayashi Y; Kobayashi T
    Biochemistry; 2010 Jun; 49(23):4732-9. PubMed ID: 20433166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel neutrophil differentiation marker phosphatidylglucoside mediates neutrophil apoptosis.
    Kina K; Masuda H; Nakayama H; Nagatsuka Y; Nabetani T; Hirabayashi Y; Takahashi Y; Shimada K; Daida H; Ogawa H; Takamori K; Iwabuchi K
    J Immunol; 2011 May; 186(9):5323-32. PubMed ID: 21451106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights on glucosylated lipids: metabolism and functions.
    Ishibashi Y; Kohyama-Koganeya A; Hirabayashi Y
    Biochim Biophys Acta; 2013 Sep; 1831(9):1475-85. PubMed ID: 23770033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic labelling of membrane microdomains/rafts in Jurkat cells indicates the presence of glycerophospholipids implicated in signal transduction by the CD3 T-cell receptor.
    Rouquette-Jazdanian AK; Pelassy C; Breittmayer JP; Cousin JL; Aussel C
    Biochem J; 2002 May; 363(Pt 3):645-55. PubMed ID: 11964165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1.
    Klappe K; Dijkhuis AJ; Hummel I; van Dam A; Ivanova PT; Milne SB; Myers DS; Brown HA; Permentier H; Kok JW
    Biochem J; 2010 Sep; 430(3):519-29. PubMed ID: 20604746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains.
    Hanafusa K; Hotta T; Iwabuchi K
    Front Cell Dev Biol; 2020; 8():589799. PubMed ID: 33195253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and analysis of novel glycolipids in vertebrate brains by HPLC/mass spectrometry.
    Nagatsuka Y; Tojo H; Hirabayashi Y
    Methods Enzymol; 2006; 417():155-67. PubMed ID: 17132504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of a novel glucosylated phospholipid by liquid chromatography-mass spectrometry.
    Ito S; Nabetani T; Shinoda Y; Nagatsuka Y; Hirabayashi Y
    Anal Biochem; 2008 May; 376(2):252-7. PubMed ID: 18342611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential expression of phosphatidylglucoside along neutrophil differentiation pathway.
    Oka S; Nagatsuka Y; Kikuchi J; Yokote T; Hirabayashi Y; Hanafusa T; Ozawa K; Muroi K
    Leuk Lymphoma; 2009 Jul; 50(7):1190-7. PubMed ID: 19557640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lipid species in membranes and cancer-related changes.
    Skotland T; Kavaliauskiene S; Sandvig K
    Cancer Metastasis Rev; 2020 Jun; 39(2):343-360. PubMed ID: 32314087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol and Sphingolipid Enriched Lipid Rafts as Therapeutic Targets in Cancer.
    Codini M; Garcia-Gil M; Albi E
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33450869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts.
    Shaikh SR
    J Nutr Biochem; 2012 Feb; 23(2):101-5. PubMed ID: 22137258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The state of lipid rafts: from model membranes to cells.
    Edidin M
    Annu Rev Biophys Biomol Struct; 2003; 32():257-83. PubMed ID: 12543707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of C16:0, C18:0, C24:1, and C24:0 sulfatides in central nervous system lipid rafts by quantitative ultra-high-pressure liquid chromatography tandem mass spectrometry.
    Moyano AL; Li G; Lopez-Rosas A; Månsson JE; van Breemen RB; Givogri MI
    Anal Biochem; 2014 Dec; 467():31-9. PubMed ID: 25205652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.