BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17933532)

  • 1. Identifying common metalloprotease inhibitors by protein fold types using Fourier transform mass spectrometry.
    Mitchell JK; Pitcher D; McArdle BM; Alnefelt T; Duffy S; Avery V; Quinn RJ
    Bioorg Med Chem Lett; 2007 Dec; 17(23):6521-4. PubMed ID: 17933532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of inhibitor-metalloenzyme interactions and selectivity using molecular mechanics grounded in quantum chemistry.
    Garmer DR; Gresh N; Roques BP
    Proteins; 1998 Apr; 31(1):42-60. PubMed ID: 9552158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of protein fold topology shared between different folds inhibited by natural products.
    McArdle BM; Quinn RJ
    Chembiochem; 2007 May; 8(7):788-98. PubMed ID: 17429823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mass spectrometry based imaging method developed for the intracellular detection of HIV protease inhibitors.
    Dekker LJ; van Kampen JJ; Reedijk ML; Burgers PC; Gruters RA; Osterhaus AD; Luider TM
    Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1183-8. PubMed ID: 19283784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of FTIR and mass spectrometry for characterization of glycated caseins.
    Oliver CM; Kher A; McNaughton D; Augustin MA
    J Dairy Res; 2009 Feb; 76(1):105-10. PubMed ID: 19121240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal activation of the co-chaperonins GroES and gp31 probed by mass spectrometry.
    Geels RB; Calmat S; Heck AJ; van der Vies SM; Heeren RM
    Rapid Commun Mass Spectrom; 2008 Nov; 22(22):3633-41. PubMed ID: 18972453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tertiary-Amine-Based Inhibitors of the Astacin Protease Meprin α.
    Tan K; Jäger C; Schlenzig D; Schilling S; Buchholz M; Ramsbeck D
    ChemMedChem; 2018 Aug; 13(16):1619-1624. PubMed ID: 29927060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases.
    Chan EW; Chattopadhaya S; Panicker RC; Huang X; Yao SQ
    J Am Chem Soc; 2004 Nov; 126(44):14435-46. PubMed ID: 15521763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays.
    Khan MT; Fuskevåg OM; Sylte I
    J Med Chem; 2009 Jan; 52(1):48-61. PubMed ID: 19072688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New aspects in fragmentation of peptide nucleic acids: comparison of positive and negative ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Ziehe M; Grossmann TN; Seitz O; Linscheid MW
    Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1132-8. PubMed ID: 19280610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A silanediol inhibitor of the metalloprotease thermolysin: synthesis and comparison with a phosphinic acid inhibitor.
    Kim J; Sieburth SM
    J Org Chem; 2004 Apr; 69(9):3008-14. PubMed ID: 15104438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular mechanisms of stabilizing proteolytic enzymes. Model of a thermolysin-like microbial metalloproteinase].
    Demidiuk IV; Zabolotskaia MV; Safrina DR; Kostrov SV
    Bioorg Khim; 2003; 29(5):461-9. PubMed ID: 14601400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening a natural product-based combinatorial library using FTICR mass spectrometry.
    Poulsen SA; Davis RA; Keys TG
    Bioorg Med Chem; 2006 Jan; 14(2):510-5. PubMed ID: 16198579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the inhibition of peptide deformylase by hydroxamic acids: influence of the sulfur donor.
    Galardon E; Giorgi M; Artaud I
    Dalton Trans; 2007 Mar; (10):1047-52. PubMed ID: 17325780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier transform infrared study of protein secondary structural changes in the muscle of Labeo rohita due to arsenic intoxication.
    Palaniappan PR; Vijayasundaram V
    Food Chem Toxicol; 2008 Nov; 46(11):3534-9. PubMed ID: 18817838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric pressure infrared (10.6 microm) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer.
    Sampson JS; Muddiman DC
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):1989-92. PubMed ID: 19504481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Methods for the analysis of surface adsorbed proteins].
    Ikai A
    Tanpakushitsu Kakusan Koso; 2004 Aug; 49(11 Suppl):1740-4. PubMed ID: 15377009
    [No Abstract]   [Full Text] [Related]  

  • 18. Enhanced potency of the metalloprotease inhibitor TAPI-2 by multivalent display.
    Raissi AJ; Scangarello FA; Hulce KR; Pontrello JK; Paradis S
    Bioorg Med Chem Lett; 2014 Apr; 24(8):2002-7. PubMed ID: 24581919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversed hydroxamate-bearing thermolysin inhibitors mimic a high-energy intermediate along the enzyme-catalyzed proteolytic reaction pathway.
    Park JD; Kim DH
    Bioorg Med Chem Lett; 2003 Oct; 13(19):3161-6. PubMed ID: 12951085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer.
    Ouvry-Patat SA; Torres MP; Gelfand CA; Quek HH; Easterling M; Speir JP; Borchers CH
    Methods Mol Biol; 2009; 492():215-31. PubMed ID: 19241035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.