These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 17933717)
1. HIV coreceptors: from discovery and designation to new paradigms and promise. Alkhatib G; Berger EA Eur J Med Res; 2007 Oct; 12(9):375-84. PubMed ID: 17933717 [TBL] [Abstract][Full Text] [Related]
2. Peptide ligands selected with CD4-induced epitopes on native dualtropic HIV-1 envelope proteins mimic extracellular coreceptor domains and bind to HIV-1 gp120 independently of coreceptor usage. Dervillez X; Klaukien V; Dürr R; Koch J; Kreutz A; Haarmann T; Stoll M; Lee D; Carlomagno T; Schnierle B; Möbius K; Königs C; Griesinger C; Dietrich U J Virol; 2010 Oct; 84(19):10131-8. PubMed ID: 20660187 [TBL] [Abstract][Full Text] [Related]
3. Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. Hill CM; Deng H; Unutmaz D; Kewalramani VN; Bastiani L; Gorny MK; Zolla-Pazner S; Littman DR J Virol; 1997 Sep; 71(9):6296-304. PubMed ID: 9261346 [TBL] [Abstract][Full Text] [Related]
4. Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds. Madani N; Princiotto AM; Zhao C; Jahanbakhshsefidi F; Mertens M; Herschhorn A; Melillo B; Smith AB; Sodroski J J Virol; 2017 Feb; 91(3):. PubMed ID: 27881646 [TBL] [Abstract][Full Text] [Related]
5. Alternative coreceptor requirements for efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages. Cashin K; Roche M; Sterjovski J; Ellett A; Gray LR; Cunningham AL; Ramsland PA; Churchill MJ; Gorry PR J Virol; 2011 Oct; 85(20):10699-709. PubMed ID: 21835796 [TBL] [Abstract][Full Text] [Related]
6. Replication-competent variants of human immunodeficiency virus type 2 lacking the V3 loop exhibit resistance to chemokine receptor antagonists. Lin G; Bertolotti-Ciarlet A; Haggarty B; Romano J; Nolan KM; Leslie GJ; Jordan AP; Huang CC; Kwong PD; Doms RW; Hoxie JA J Virol; 2007 Sep; 81(18):9956-66. PubMed ID: 17609282 [TBL] [Abstract][Full Text] [Related]
7. Roles of CD4 and coreceptors in binding, endocytosis, and proteolysis of gp120 envelope glycoproteins derived from human immunodeficiency virus type 1. Kozak SL; Kuhmann SE; Platt EJ; Kabat D J Biol Chem; 1999 Aug; 274(33):23499-507. PubMed ID: 10438529 [TBL] [Abstract][Full Text] [Related]
8. Preferential coreceptor utilization and cytopathicity by dual-tropic HIV-1 in human lymphoid tissue ex vivo. Glushakova S; Yi Y; Grivel JC; Singh A; Schols D; De Clercq E; Collman RG; Margolis L J Clin Invest; 1999 Sep; 104(5):R7-R11. PubMed ID: 10487781 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. Derdeyn CA; Decker JM; Sfakianos JN; Wu X; O'Brien WA; Ratner L; Kappes JC; Shaw GM; Hunter E J Virol; 2000 Sep; 74(18):8358-67. PubMed ID: 10954535 [TBL] [Abstract][Full Text] [Related]
10. Effect of HIV-1 subtype and tropism on treatment with chemokine coreceptor entry inhibitors; overview of viral entry inhibition. Panos G; Watson DC Crit Rev Microbiol; 2015; 41(4):473-87. PubMed ID: 24635642 [TBL] [Abstract][Full Text] [Related]
11. A double-mimetic peptide efficiently neutralizes HIV-1 by bridging the CD4- and coreceptor-binding sites of gp120. Quinlan BD; Joshi VR; Gardner MR; Ebrahimi KH; Farzan M J Virol; 2014 Mar; 88(6):3353-8. PubMed ID: 24390333 [TBL] [Abstract][Full Text] [Related]
12. HIV coreceptors: role of structure, posttranslational modifications, and internalization in viral-cell fusion and as targets for entry inhibitors. Zaitseva M; Peden K; Golding H Biochim Biophys Acta; 2003 Jul; 1614(1):51-61. PubMed ID: 12873765 [TBL] [Abstract][Full Text] [Related]
13. Interactions of CCR5 and CXCR4 with CD4 and gp120 in human blood monocyte-derived dendritic cells. Xiao X; Kinter A; Broder CC; Dimitrov DS Exp Mol Pathol; 2000 Jun; 68(3):133-8. PubMed ID: 10816381 [TBL] [Abstract][Full Text] [Related]
15. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. LaBranche CC; Hoffman TL; Romano J; Haggarty BS; Edwards TG; Matthews TJ; Doms RW; Hoxie JA J Virol; 1999 Dec; 73(12):10310-9. PubMed ID: 10559349 [TBL] [Abstract][Full Text] [Related]
16. Multiple determinants are involved in HIV coreceptor use as demonstrated by CCR4/CCL22 interaction in peripheral blood mononuclear cells (PBMCs). Agrawal L; Vanhorn-Ali Z; Alkhatib G J Leukoc Biol; 2002 Nov; 72(5):1063-74. PubMed ID: 12429730 [TBL] [Abstract][Full Text] [Related]
18. Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. Shi Y; Brandin E; Vincic E; Jansson M; Blaxhult A; Gyllensten K; Moberg L; Broström C; Fenyö EM; Albert J J Gen Virol; 2005 Dec; 86(Pt 12):3385-3396. PubMed ID: 16298986 [TBL] [Abstract][Full Text] [Related]
19. Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. Dey B; Lerner DL; Lusso P; Boyd MR; Elder JH; Berger EA J Virol; 2000 May; 74(10):4562-9. PubMed ID: 10775592 [TBL] [Abstract][Full Text] [Related]
20. Role of the HIV type 1 glycoprotein 120 V3 loop in determining coreceptor usage. Verrier F; Borman AM; Brand D; Girard M AIDS Res Hum Retroviruses; 1999 May; 15(8):731-43. PubMed ID: 10357469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]