These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1793389)

  • 1. Effects of stimulus parameters on human evoked potentials to shifts in the lateralization of a noise.
    McEvoy LK; Picton TW; Champagne SC
    Audiology; 1991; 30(5):286-302. PubMed ID: 1793389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human evoked potentials and the lateralization of a sound.
    Picton TW; McEvoy LK; Champagne SC
    Acta Otolaryngol Suppl; 1991; 491():139-43; discussion 144. PubMed ID: 1814145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The timing of the processes underlying lateralization: psychophysical and evoked potential measures.
    McEvoy LK; Picton TW; Champagne SC
    Ear Hear; 1991 Dec; 12(6):389-98. PubMed ID: 1797606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans.
    Tardif E; Murray MM; Meylan R; Spierer L; Clarke S
    Brain Res; 2006 May; 1092(1):161-76. PubMed ID: 16684510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response.
    Zhang F; Boettcher FA
    J Am Acad Audiol; 2008 Jan; 19(1):82-94. PubMed ID: 18637411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping lateralization of click trains in younger and older populations.
    Babkoff H; Muchnik C; Ben-David N; Furst M; Even-Zohar S; Hildesheimer M
    Hear Res; 2002 Mar; 165(1-2):117-27. PubMed ID: 12031521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing.
    Van Deun L; van Wieringen A; Van den Bogaert T; Scherf F; Offeciers FE; Van de Heyning PH; Desloovere C; Dhooge IJ; Deggouj N; De Raeve L; Wouters J
    Ear Hear; 2009 Apr; 30(2):178-90. PubMed ID: 19194296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech perception, localization, and lateralization with bilateral cochlear implants.
    van Hoesel RJ; Tyler RS
    J Acoust Soc Am; 2003 Mar; 113(3):1617-30. PubMed ID: 12656396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.
    Ross B
    J Neurophysiol; 2008 Sep; 100(3):1265-77. PubMed ID: 18632891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The measurement of the lateralization of narrow bands of noise using an acoustic pointing paradigm: the effect of sound-pressure level.
    Simon HJ; Collins CC; Jampolsky A; Morledge DE; Yu J
    J Acoust Soc Am; 1994 Mar; 95(3):1534-47. PubMed ID: 8176057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences.
    Johnson BW; Hautus MJ
    Neuropsychologia; 2010 Jul; 48(9):2610-9. PubMed ID: 20466010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory lateralization in schizophrenia--mismatch negativity and behavioral evidence of a selective impairment in encoding interaural time cues.
    Matthews N; Todd J; Budd TW; Cooper G; Michie PT
    Clin Neurophysiol; 2007 Apr; 118(4):833-44. PubMed ID: 17317304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing interaural cues in sound segregation by young and middle-aged brains.
    Wambacq IJ; Koehnke J; Besing J; Romei LL; Depierro A; Cooper D
    J Am Acad Audiol; 2009; 20(7):453-8. PubMed ID: 19928398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory evoked fields to variations of interaural time delay.
    Soeta Y; Nakagawa S; Tonoike M
    Neurosci Lett; 2005 Aug; 383(3):311-6. PubMed ID: 15955427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Informational Masking Effects on Neural Encoding of Stimulus Onset and Acoustic Change.
    Niemczak CE; Vander Werff KR
    Ear Hear; 2019; 40(1):156-167. PubMed ID: 29782442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2016 Dec; 116(6):2720-2729. PubMed ID: 27683889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Right hemispheric dominance for echo suppression.
    Spierer L; Bourquin NM; Tardif E; Murray MM; Clarke S
    Neuropsychologia; 2009 Jan; 47(2):465-72. PubMed ID: 18983863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat.
    Lohuis TD; Fuzessery ZM
    Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Click lateralization is related to the beta component of the dichotic brainstem auditory evoked potentials of human subjects.
    Furst M; Levine RA; McGaffigan PM
    J Acoust Soc Am; 1985 Nov; 78(5):1644-51. PubMed ID: 4067079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.