BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 17935299)

  • 1. Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent.
    Eggler AL; Luo Y; van Breemen RB; Mesecar AD
    Chem Res Toxicol; 2007 Dec; 20(12):1878-84. PubMed ID: 17935299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling.
    Ko Y; Hong M; Lee S; Kumar M; Ibrahim L; Nutsch K; Stanton C; Sondermann P; Sandoval B; Bulos ML; Iaconelli J; Chatterjee AK; Wiseman RL; Schultz PG; Bollong MJ
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2300763120. PubMed ID: 37155889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1.
    Satoh T; Kosaka K; Itoh K; Kobayashi A; Yamamoto M; Shimojo Y; Kitajima C; Cui J; Kamins J; Okamoto S; Izumi M; Shirasawa T; Lipton SA
    J Neurochem; 2008 Feb; 104(4):1116-31. PubMed ID: 17995931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.
    Lin HY; Haegele JA; Disare MT; Lin Q; Aye Y
    J Am Chem Soc; 2015 May; 137(19):6232-44. PubMed ID: 25909755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophilic metabolites targeting the KEAP1/NRF2 partnership.
    Dinkova-Kostova AT; Hakomäki H; Levonen AL
    Curr Opin Chem Biol; 2024 Feb; 78():102425. PubMed ID: 38241876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications.
    Ying J; Clavreul N; Sethuraman M; Adachi T; Cohen RA
    Free Radic Biol Med; 2007 Oct; 43(8):1099-108. PubMed ID: 17854705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinylation of a KEAP1 sensor lysine promotes NRF2 activation.
    Ibrahim L; Stanton C; Nutsch K; Nguyen T; Li-Ma C; Ko Y; Lander GC; Wiseman RL; Bollong MJ
    bioRxiv; 2023 May; ():. PubMed ID: 37215033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic discovery of chemical probes that perturb protein complexes in human cells.
    Lazear MR; Remsberg JR; Jaeger MG; Rothamel K; Her HL; DeMeester KE; Njomen E; Hogg SJ; Rahman J; Whitby LR; Won SJ; Schafroth MA; Ogasawara D; Yokoyama M; Lindsey GL; Li H; Germain J; Barbas S; Vaughan J; Hanigan TW; Vartabedian VF; Reinhardt CJ; Dix MM; Koo SJ; Heo I; Teijaro JR; Simon GM; Ghosh B; Abdel-Wahab O; Ahn K; Saghatelian A; Melillo B; Schreiber SL; Yeo GW; Cravatt BF
    Mol Cell; 2023 May; 83(10):1725-1742.e12. PubMed ID: 37084731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds.
    Julio AR; Shikwana F; Truong C; Burton NR; Dominguez E; Turmon AC; Cao J; Backus K
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent hitchhikers guide proteins to the nucleus.
    Russell AF; Currie MF; Chatterjee C
    Cell Chem Biol; 2024 Mar; 31(3):383-386. PubMed ID: 38518744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput profiling of reactive cysteines.
    Crunkhorn S
    Nat Rev Drug Discov; 2024 Feb; 23(2):107. PubMed ID: 38216770
    [No Abstract]   [Full Text] [Related]  

  • 13. The nuclear factor erythroid 2-related factor 2/p53 axis in breast cancer.
    Xia L; Ma W; Afrashteh A; Sajadi MA; Fakheri H; Valilo M
    Biochem Med (Zagreb); 2023 Oct; 33(3):030504. PubMed ID: 37841775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of STAT3 and NRF2 in Tumors: Potential Targets for Antitumor Therapy.
    Tian Y; Liu H; Wang M; Wang R; Yi G; Zhang M; Chen R
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment.
    Kumar H; Kumar RM; Bhattacharjee D; Somanna P; Jain V
    Front Pharmacol; 2022; 13():720076. PubMed ID: 35571115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues.
    Davalieva K; Kiprijanovska S; Dimovski A; Rosoklija G; Dwork AJ
    J Proteomics; 2021 Mar; 235():104117. PubMed ID: 33453434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of natural products in revealing NRF2 function.
    Zhang DD; Chapman E
    Nat Prod Rep; 2020 Jun; 37(6):797-826. PubMed ID: 32400766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nrf2 Activation and Its Coordination with the Protective Defense Systems in Response to Electrophilic Stress.
    Unoki T; Akiyama M; Kumagai Y
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31952233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TFEB activates Nrf2 by repressing its E3 ubiquitin ligase DCAF11 and promoting phosphorylation of p62.
    Park JY; Kim S; Sohn HY; Koh YH; Jo C
    Sci Rep; 2019 Oct; 9(1):14354. PubMed ID: 31586112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing.
    Wedel S; Manola M; Cavinato M; Trougakos IP; Jansen-Dürr P
    Molecules; 2018 May; 23(5):. PubMed ID: 29783751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.