BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17935448)

  • 1. Consistent free energy landscapes and thermodynamic properties of small proteins based on a single all-atom force field employing an implicit solvation.
    Kim E; Jang S; Pak Y
    J Chem Phys; 2007 Oct; 127(14):145104. PubMed ID: 17935448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct folding simulation of alpha-helices and beta-hairpins based on a single all-atom force field with an implicit solvation model.
    Jang S; Kim E; Pak Y
    Proteins; 2007 Jan; 66(1):53-60. PubMed ID: 17063490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy surfaces of miniproteins with a betabetaalpha motif: replica exchange molecular dynamics simulation with an implicit solvation model.
    Jang S; Kim E; Pak Y
    Proteins; 2006 Mar; 62(3):663-71. PubMed ID: 16329109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct folding studies of various alpha and beta strands using replica exchange molecular dynamics simulation.
    Kim E; Jang S; Pak Y
    J Chem Phys; 2008 May; 128(17):175104. PubMed ID: 18465943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-atom level direct folding simulation of a betabetaalpha miniprotein.
    Jang S; Kim E; Pak Y
    J Chem Phys; 2008 Mar; 128(10):105102. PubMed ID: 18345926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-atom ab initio native structure prediction of a mixed fold (1FME): a comparison of structural and folding characteristics of various beta beta alpha miniproteins.
    Kim E; Jang S; Pak Y
    J Chem Phys; 2009 Nov; 131(19):195102. PubMed ID: 19929079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy landscapes of a highly structured beta-hairpin peptide and its single mutant.
    Kim E; Yang C; Jang S; Pak Y
    J Chem Phys; 2008 Oct; 129(16):165104. PubMed ID: 19045319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.
    Yeh IC; Lee MS; Olson MA
    J Phys Chem B; 2008 Nov; 112(47):15064-73. PubMed ID: 18959439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New-generation amber united-atom force field.
    Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R
    J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minima hopping study of all-atom protein folding and structure prediction.
    Roy S; Goedecker S; Field MJ; Penev E
    J Phys Chem B; 2009 May; 113(20):7315-21. PubMed ID: 19391598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic potential of mean force as a solvation function for protein structure prediction.
    Lin MS; Fawzi NL; Head-Gordon T
    Structure; 2007 Jun; 15(6):727-40. PubMed ID: 17562319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis on changes in thermodynamic quantities upon protein folding: essential role of hydration.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2007 Jun; 126(22):225102. PubMed ID: 17581082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins.
    Shimizu S; Chan HS
    Proteins; 2002 Jul; 48(1):15-30. PubMed ID: 12012334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions.
    Chen J; Brooks CL
    Phys Chem Chem Phys; 2008 Jan; 10(4):471-81. PubMed ID: 18183310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation parameters for predicting the structure of surface loops in proteins: transferability and entropic effects.
    Das B; Meirovitch H
    Proteins; 2003 May; 51(3):470-83. PubMed ID: 12696057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER.
    Voelz VA; Dill KA; Chorny I
    Biopolymers; 2011; 96(5):639-50. PubMed ID: 21184487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.