BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17935704)

  • 21. Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor.
    Hellewell SC; Yan EB; Alwis DS; Bye N; Morganti-Kossmann MC
    J Neuroinflammation; 2013 Dec; 10():156. PubMed ID: 24344874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury.
    Schober ME; Requena DF; Block B; Davis LJ; Rodesch C; Casper TC; Juul SE; Kesner RP; Lane RH
    J Neurotrauma; 2014 Feb; 31(4):358-69. PubMed ID: 23972011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Erythropoietin in the neurology ICU.
    Robertson C; Sadrameli S
    Curr Treat Options Neurol; 2013 Apr; 15(2):104-12. PubMed ID: 23436114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erythropoietin improves neuronal proliferation in dentate gyrus of hippocampal formation in an animal model of Alzheimer's disease.
    Arabpoor Z; Hamidi G; Rashidi B; Shabrang M; Alaei H; Sharifi MR; Salami M; Dolatabadi HR; Reisi P
    Adv Biomed Res; 2012; 1():50. PubMed ID: 23326781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of different mild hypoxia manipulations on kainic acid-induced seizures in the hippocampus of rats.
    Yang Y; Chen J; Li L; Gao Y; Chen J; Fei Z; Liu W
    Neurochem Res; 2013 Jan; 38(1):123-32. PubMed ID: 23065181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the protective effect of erythropoietin on spinal cord injury in rats.
    Hong Z; Hong H; Chen H; Wang Z; Hong D
    Exp Ther Med; 2011 Sep; 2(5):837-841. PubMed ID: 22977585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erythropoietin mediates neurobehavioral recovery and neurovascular remodeling following traumatic brain injury in rats by increasing expression of vascular endothelial growth factor.
    Xiong Y; Zhang Y; Mahmood A; Meng Y; Qu C; Chopp M
    Transl Stroke Res; 2011 Dec; 2(4):619-32. PubMed ID: 22707988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Guilty molecules, guilty minds? The conflicting roles of the innate immune response to traumatic brain injury.
    Hellewell SC; Morganti-Kossmann MC
    Mediators Inflamm; 2012; 2012():356494. PubMed ID: 22701273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury.
    McConeghy KW; Hatton J; Hughes L; Cook AM
    CNS Drugs; 2012 Jul; 26(7):613-36. PubMed ID: 22668124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red Blood Cell Transfusion and Transfusion Alternatives in Traumatic Brain Injury.
    Kramer AH; Le Roux P
    Curr Treat Options Neurol; 2012 Apr; 14(2):150-163. PubMed ID: 22314930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erythropoietin promotes neurovascular remodeling and long-term functional recovery in rats following traumatic brain injury.
    Ning R; Xiong Y; Mahmood A; Zhang Y; Meng Y; Qu C; Chopp M
    Brain Res; 2011 Apr; 1384():140-50. PubMed ID: 21295557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved cerebrovascular function and reduced histological damage with darbepoietin alfa administration after cortical impact injury in rats.
    Cherian L; Goodman JC; Robertson C
    J Pharmacol Exp Ther; 2011 May; 337(2):451-6. PubMed ID: 21270134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vitreal levels of erythropoietin are increased in patients with retinal vein occlusion and correlate with vitreal VEGF and the extent of macular edema.
    Stahl A; Buchwald A; Martin G; Junker B; Chen J; Hansen LL; Agostini HT; Smith LE; Feltgen N
    Retina; 2010 Oct; 30(9):1524-9. PubMed ID: 20664492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment.
    Zhang Y; Xiong Y; Mahmood A; Meng Y; Liu Z; Qu C; Chopp M
    Brain Res; 2010 Sep; 1353():249-57. PubMed ID: 20654589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury.
    Shlosberg D; Benifla M; Kaufer D; Friedman A
    Nat Rev Neurol; 2010 Jul; 6(7):393-403. PubMed ID: 20551947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Angiogenesis, neurogenesis and brain recovery of function following injury.
    Xiong Y; Mahmood A; Chopp M
    Curr Opin Investig Drugs; 2010 Mar; 11(3):298-308. PubMed ID: 20178043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erythropoietin: a multimodal neuroprotective agent.
    Byts N; Sirén AL
    Exp Transl Stroke Med; 2009 Oct; 1():4. PubMed ID: 20142991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erythropoietin and its receptors in the brainstem of adults with fatal falciparum malaria.
    Medana IM; Day NP; Hien TT; White NJ; Turner GD
    Malar J; 2009 Nov; 8():261. PubMed ID: 19930602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose.
    Xiong Y; Mahmood A; Meng Y; Zhang Y; Qu C; Schallert T; Chopp M
    J Neurosurg; 2010 Sep; 113(3):598-608. PubMed ID: 19817538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS.
    Alcalá-Barraza SR; Lee MS; Hanson LR; McDonald AA; Frey WH; McLoon LK
    J Drug Target; 2010 Apr; 18(3):179-90. PubMed ID: 19807216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.