These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17935718)

  • 41. Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations.
    Miloshevsky GV; Jordan PC
    Structure; 2007 Dec; 15(12):1654-62. PubMed ID: 18073114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrophysiological characterization of a novel Kv channel blocker N,N'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyl) ]bis(4-methyl)-benzenesulfonamide found in virtual screening.
    Gao ZB; Chen XQ; Jiang HL; Liu H; Hu GY
    Acta Pharmacol Sin; 2008 Apr; 29(4):405-12. PubMed ID: 18358085
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extracellular blockade of potassium channels by TEA+: the tip of the iceberg?
    Roux B
    J Gen Physiol; 2006 Dec; 128(6):635-6. PubMed ID: 17130517
    [No Abstract]   [Full Text] [Related]  

  • 44. Second-generation sulfonylureas preserve inhibition of mitochondrial permeability transition by the mitochondrial K+(ATP) opener nicorandil in experimental myocardial infarction.
    Argaud L; Garrier O; Loufouat J; Gomez L; Couture-Lepetit E; Gateau-Roesch O; Robert D; Ovize M
    Shock; 2009 Sep; 32(3):247-52. PubMed ID: 19174741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Possible participation of the nitric oxide-cyclic GMP-protein kinase G-K+ channels pathway in the peripheral antinociception of melatonin.
    Hernández-Pacheco A; Araiza-Saldaña CI; Granados-Soto V; Mixcoatl-Zecuatl T
    Eur J Pharmacol; 2008 Oct; 596(1-3):70-6. PubMed ID: 18755181
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Different residues in channel turret determining the selectivity of ADWX-1 inhibitor peptide between Kv1.1 and Kv1.3 channels.
    Yin SJ; Jiang L; Yi H; Han S; Yang DW; Liu ML; Liu H; Cao ZJ; Wu YL; Li WX
    J Proteome Res; 2008 Nov; 7(11):4890-7. PubMed ID: 18937510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational dynamics of the inner pore helix of voltage-gated potassium channels.
    Choe S; Grabe M
    J Chem Phys; 2009 Jun; 130(21):215103. PubMed ID: 19508102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphatidic acid plays a special role in stabilizing and folding of the tetrameric potassium channel KcsA.
    Raja M; Spelbrink RE; de Kruijff B; Killian JA
    FEBS Lett; 2007 Dec; 581(29):5715-22. PubMed ID: 18036565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combining electron crystallography and X-ray crystallography to study the MlotiK1 cyclic nucleotide-regulated potassium channel.
    Clayton GM; Aller SG; Wang J; Unger V; Morais-Cabral JH
    J Struct Biol; 2009 Sep; 167(3):220-6. PubMed ID: 19545635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase.
    Mandrich L; Manco G
    Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of the intracellular cavity in potassium channel conductivity.
    Furini S; Zerbetto F; Cavalcanti S
    J Phys Chem B; 2007 Dec; 111(50):13993-4000. PubMed ID: 18027917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Opening the gate in potassium channels.
    Swartz KJ
    Nat Struct Mol Biol; 2004 Jun; 11(6):499-501. PubMed ID: 15164005
    [No Abstract]   [Full Text] [Related]  

  • 53. Increasing pH causes faster anion-and cation-transport rates through a synthetic ion channel.
    Madhavan N; Gin MS
    Chembiochem; 2007 Oct; 8(15):1834-40. PubMed ID: 17868157
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein structure. A new portrait puts potassium pore in a fresh light.
    Service RF
    Science; 2005 Aug; 309(5736):867. PubMed ID: 16081710
    [No Abstract]   [Full Text] [Related]  

  • 55. Structural motifs underlying voltage-dependent K+ channel function.
    Taglialatela M; Brown AM
    Kidney Int; 1995 Oct; 48(4):918-22. PubMed ID: 8569100
    [No Abstract]   [Full Text] [Related]  

  • 56. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture).
    MacKinnon R
    Angew Chem Int Ed Engl; 2004 Aug; 43(33):4265-77. PubMed ID: 15368373
    [No Abstract]   [Full Text] [Related]  

  • 57. Systemic potassium transport in septic shock.
    Eisenhut M
    Pediatr Crit Care Med; 2006 Sep; 7(5):499. PubMed ID: 16960544
    [No Abstract]   [Full Text] [Related]  

  • 58. Potassium channels and septic shock.
    Oliver JA; Landry DW
    Crit Care Med; 2006 Apr; 34(4):1255-7. PubMed ID: 16550079
    [No Abstract]   [Full Text] [Related]  

  • 59. Spatiotemporal Resolution of Conformational Changes in Biomolecules by Combining Pulsed Electron-Electron Double Resonance Spectroscopy with Microsecond Freeze-Hyperquenching.
    Hett T; Zbik T; Mukherjee S; Matsuoka H; Bönigk W; Klose D; Rouillon C; Brenner N; Peuker S; Klement R; Steinhoff HJ; Grubmüller H; Seifert R; Schiemann O; Kaupp UB
    J Am Chem Soc; 2021 May; 143(18):6981-6989. PubMed ID: 33905249
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The MlotiK1 channel transports ions along the canonical conduction pore.
    Silverman WR; Heginbotham L
    FEBS Lett; 2007 Oct; 581(26):5024-8. PubMed ID: 17935718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.