These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 17935728)
1. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows. Park HM; Lee WM J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728 [TBL] [Abstract][Full Text] [Related]
2. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Park HM; Lee WM Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093 [TBL] [Abstract][Full Text] [Related]
3. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Park HM; Kim TW Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials. Zhao C; Yang C Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559 [TBL] [Abstract][Full Text] [Related]
5. Analysis of electroosmotic flow of power-law fluids in a slit microchannel. Zhao C; Zholkovskij E; Masliyah JH; Yang C J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891 [TBL] [Abstract][Full Text] [Related]
6. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Zhao C; Yang C Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874 [TBL] [Abstract][Full Text] [Related]
7. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
8. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. Xuan X; Li D J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236 [TBL] [Abstract][Full Text] [Related]
9. Recursive estimation of transient inhomogeneous zeta potential in microchannel turns using velocity measurements. Park HM; Kim TW Biomed Microdevices; 2009 Feb; 11(1):231-41. PubMed ID: 18807196 [TBL] [Abstract][Full Text] [Related]
10. Flow behavior of periodical electroosmosis in microchannel for biochips. Wang X; Wu J J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240 [TBL] [Abstract][Full Text] [Related]
11. Electroosmotic Flow through an Annulus. Tsao HK J Colloid Interface Sci; 2000 May; 225(1):247-250. PubMed ID: 10767168 [TBL] [Abstract][Full Text] [Related]
12. Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: Mathematical modeling. Tripathi D; Yadav A; Bég OA Math Biosci; 2017 Jan; 283():155-168. PubMed ID: 27913147 [TBL] [Abstract][Full Text] [Related]
13. Multiparticle collision dynamics modeling of viscoelastic fluids. Tao YG; Götze IO; Gompper G J Chem Phys; 2008 Apr; 128(14):144902. PubMed ID: 18412477 [TBL] [Abstract][Full Text] [Related]
14. A method to determine zeta potential and Navier slip coefficient of microchannels. Park HM J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996 [TBL] [Abstract][Full Text] [Related]
15. Elastic instabilities in the electroosmotic flow of non-Newtonian fluids through T-shaped microchannels. Song L; Yu L; Li D; Jagdale PP; Xuan X Electrophoresis; 2020 Apr; 41(7-8):588-597. PubMed ID: 31786811 [TBL] [Abstract][Full Text] [Related]
16. Electroosmotic flow in a capillary annulus with high zeta potentials. Kang Y; Yang C; Huang X J Colloid Interface Sci; 2002 Sep; 253(2):285-94. PubMed ID: 16290861 [TBL] [Abstract][Full Text] [Related]
17. Electroosmotic flow of non-Newtonian fluids in a constriction microchannel. Ko CH; Li D; Malekanfard A; Wang YN; Fu LM; Xuan X Electrophoresis; 2019 May; 40(10):1387-1394. PubMed ID: 30346029 [TBL] [Abstract][Full Text] [Related]
18. Electroosmotic flow in a water column surrounded by an immiscible liquid. Movahed S; Khani S; Wen JZ; Li D J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326 [TBL] [Abstract][Full Text] [Related]
19. Modeling of spontaneous penetration of viscoelastic fluids and biofluids into capillaries. Kornev KG; Neimark AV J Colloid Interface Sci; 2003 Jun; 262(1):253-62. PubMed ID: 16256602 [TBL] [Abstract][Full Text] [Related]
20. Electrokinetic flow of non-Newtonian fluids in microchannels. Berli CL; Olivares ML J Colloid Interface Sci; 2008 Apr; 320(2):582-9. PubMed ID: 18258250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]