BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17935754)

  • 1. Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments.
    Gibney BP; Nüsslein K
    Chemosphere; 2007 Dec; 70(2):329-36. PubMed ID: 17935754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate controls on iron and arsenic in an urban lake.
    Senn DB; Hemond HF
    Science; 2002 Jun; 296(5577):2373-6. PubMed ID: 12089437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface.
    Yu R; Gan P; Mackay AA; Zhang S; Smets BF
    FEMS Microbiol Ecol; 2010 Feb; 71(2):260-71. PubMed ID: 19909343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone.
    Vanbroekhoven K; Van Roy S; Gielen C; Maesen M; Ryngaert A; Diels L; Seuntjens P
    Environ Pollut; 2007 Aug; 148(3):759-69. PubMed ID: 17445959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal.
    Héry M; Van Dongen BE; Gill F; Mondal D; Vaughan DJ; Pancost RD; Polya DA; Lloyd JR
    Geobiology; 2010 Mar; 8(2):155-68. PubMed ID: 20156294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA.
    Barringer JL; Mumford A; Young LY; Reilly PA; Bonin JL; Rosman R
    Water Res; 2010 Nov; 44(19):5532-44. PubMed ID: 20580401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe.
    Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF
    Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.
    Wei N; Finneran KT
    Environ Sci Technol; 2011 Apr; 45(7):3012-8. PubMed ID: 21384909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenicicoccus bolidensis a novel arsenic reducing actinomycete in contaminated sediments near the Adak mine (northern Sweden): impact on water chemistry.
    Routh J; Saraswathy A; Collins MD
    Sci Total Environ; 2007 Jul; 379(2-3):216-25. PubMed ID: 17064754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical.
    Radl V; Pritsch K; Munch JC; Schloter M
    Environ Pollut; 2005 Sep; 137(2):345-53. PubMed ID: 15963373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria.
    Muehe EM; Gerhardt S; Schink B; Kappler A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations.
    Höhn R; Isenbeck-Schröter M; Kent DB; Davis JA; Jakobsen R; Jann S; Niedan V; Scholz C; Stadler S; Tretner A
    J Contam Hydrol; 2006 Nov; 88(1-2):36-54. PubMed ID: 16945450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.
    Peters SC
    J Contam Hydrol; 2008 Jul; 99(1-4):8-21. PubMed ID: 18571283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic mobility in contaminated lake sediments.
    Nikolaidis NP; Dobbs GM; Chen J; Lackovic JA
    Environ Pollut; 2004 Jun; 129(3):479-87. PubMed ID: 15016468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer.
    Haack SK; Fogarty LR; West TG; Alm EW; McGuire JT; Long DT; Hyndman DW; Forney LJ
    Environ Microbiol; 2004 May; 6(5):438-48. PubMed ID: 15049917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.