These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering. Bosetti M; Boccafoschi F; Calarco A; Leigheb M; Gatti S; Piffanelli V; Peluso G; Cannas M J Biomater Sci Polym Ed; 2008; 19(9):1111-23. PubMed ID: 18727855 [TBL] [Abstract][Full Text] [Related]
3. Performance of polyoxymethylene plastic (POM) as a component of a tissue engineering bioreactor. Penick KJ; Solchaga LA; Berilla JA; Welter JF J Biomed Mater Res A; 2005 Oct; 75(1):168-74. PubMed ID: 16052509 [TBL] [Abstract][Full Text] [Related]
4. The effect of a chitosan-gelatin matrix and dexamethasone on the behavior of rabbit mesenchymal stem cells. Medrado GC; Machado CB; Valerio P; Sanches MD; Goes AM Biomed Mater; 2006 Sep; 1(3):155-61. PubMed ID: 18458397 [TBL] [Abstract][Full Text] [Related]
5. High-throughput and combinatorial technologies for tissue engineering applications. Peters A; Brey DM; Burdick JA Tissue Eng Part B Rev; 2009 Sep; 15(3):225-39. PubMed ID: 19290801 [TBL] [Abstract][Full Text] [Related]
6. Compatibility of embryonic stem cells with biomaterials. Handschel J; Berr K; Depprich R; Naujoks C; Kübler NR; Meyer U; Ommerborn M; Lammers L J Biomater Appl; 2009 May; 23(6):549-60. PubMed ID: 18757497 [TBL] [Abstract][Full Text] [Related]
7. Some properties of keratin biomaterials: kerateines. Hill P; Brantley H; Van Dyke M Biomaterials; 2010 Feb; 31(4):585-93. PubMed ID: 19822360 [TBL] [Abstract][Full Text] [Related]
8. Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. Naujoks C; Langenbach F; Berr K; Depprich R; Kübler N; Meyer U; Handschel J; Kögler G J Biomater Appl; 2011 Jan; 25(5):497-512. PubMed ID: 20207776 [TBL] [Abstract][Full Text] [Related]
9. Fast and efficient screening system for new biomaterials in tissue engineering: a model for peripheral nerve regeneration. Bruns S; Stark Y; Wieland M; Stahl F; Kasper C; Scheper T J Biomed Mater Res A; 2007 Jun; 81(3):736-47. PubMed ID: 17226811 [TBL] [Abstract][Full Text] [Related]
10. Bone engineering: combining smart biomaterials and the application of stem cells. Lechner S; Huss R Artif Organs; 2006 Oct; 30(10):770-4. PubMed ID: 17026576 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Nakajima M; Ishimuro T; Kato K; Ko IK; Hirata I; Arima Y; Iwata H Biomaterials; 2007 Feb; 28(6):1048-60. PubMed ID: 17081602 [TBL] [Abstract][Full Text] [Related]
12. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558 [TBL] [Abstract][Full Text] [Related]
13. The use of a shape-memory poly(epsilon-caprolactone)dimethacrylate network as a tissue engineering scaffold. Neuss S; Blomenkamp I; Stainforth R; Boltersdorf D; Jansen M; Butz N; Perez-Bouza A; Knüchel R Biomaterials; 2009 Mar; 30(9):1697-705. PubMed ID: 19121539 [TBL] [Abstract][Full Text] [Related]
14. High-throughput screening of cell responses to biomaterials. Yliperttula M; Chung BG; Navaladi A; Manbachi A; Urtti A Eur J Pharm Sci; 2008 Oct; 35(3):151-60. PubMed ID: 18586092 [TBL] [Abstract][Full Text] [Related]
15. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Hu YJ; Wei X; Zhao W; Liu YS; Chen GQ Acta Biomater; 2009 May; 5(4):1115-25. PubMed ID: 18976972 [TBL] [Abstract][Full Text] [Related]
17. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Anderson DG; Putnam D; Lavik EB; Mahmood TA; Langer R Biomaterials; 2005 Aug; 26(23):4892-7. PubMed ID: 15763269 [TBL] [Abstract][Full Text] [Related]
18. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139 [TBL] [Abstract][Full Text] [Related]
19. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Gottwald E; Giselbrecht S; Augspurger C; Lahni B; Dambrowsky N; Truckenmüller R; Piotter V; Gietzelt T; Wendt O; Pfleging W; Welle A; Rolletschek A; Wobus AM; Weibezahn KF Lab Chip; 2007 Jun; 7(6):777-85. PubMed ID: 17538721 [TBL] [Abstract][Full Text] [Related]
20. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Liu H; Fan H; Toh SL; Goh JC Biomaterials; 2008 Apr; 29(10):1443-53. PubMed ID: 18155134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]