These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17935790)

  • 1. A semi-automated algorithm for studying neuronal oscillatory patterns: a wavelet-based time frequency and coherence analysis.
    Romcy-Pereira RN; de Araujo DB; Leite JP; Garcia-Cairasco N
    J Neurosci Methods; 2008 Jan; 167(2):384-92. PubMed ID: 17935790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wavelet-based method for local phase extraction from a multi-frequency oscillatory signal.
    Roux SG; Cenier T; Garcia S; Litaudon P; Buonviso N
    J Neurosci Methods; 2007 Feb; 160(1):135-43. PubMed ID: 17049617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of oscillatory patterns in the human sleep EEG using a novel detection algorithm.
    Olbrich E; Achermann P
    J Sleep Res; 2005 Dec; 14(4):337-46. PubMed ID: 16364134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comodulation measure of neuronal oscillations with general harmonic wavelet bicoherence and application to sleep analysis.
    Li X; Li D; Voss LJ; Sleigh JW
    Neuroimage; 2009 Nov; 48(3):501-14. PubMed ID: 19615451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.
    Cheng RK; Williams CL; Meck WH
    Brain Res; 2008 Oct; 1237():176-94. PubMed ID: 18793620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for detection and classification of events in neural activity.
    Bokil HS; Pesaran B; Andersen RA; Mitra PP
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1678-87. PubMed ID: 16916103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting time-dependent coherence between non-stationary electrophysiological signals--a combined statistical and time-frequency approach.
    Zhan Y; Halliday D; Jiang P; Liu X; Feng J
    J Neurosci Methods; 2006 Sep; 156(1-2):322-32. PubMed ID: 16563517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of rhythmic patterns produced by spinal neural networks.
    Mor Y; Lev-Tov A
    J Neurophysiol; 2007 Nov; 98(5):2807-17. PubMed ID: 17715187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wavelet based method for automatic detection of slow eye movements: a pilot study.
    Magosso E; Provini F; Montagna P; Ursino M
    Med Eng Phys; 2006 Nov; 28(9):860-75. PubMed ID: 16497535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting nonlinear oscillations in broadband signals.
    Vejmelka M; Palus M
    Chaos; 2009 Mar; 19(1):015114. PubMed ID: 19335018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of evoked local field potentials in the hippocampus of epileptic rats with spontaneous seizures.
    Queiroz CM; Gorter JA; Lopes da Silva FH; Wadman WJ
    J Neurophysiol; 2009 Mar; 101(3):1588-97. PubMed ID: 18842951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated seizure onset detection for accurate onset time determination in intracranial EEG.
    Chan AM; Sun FT; Boto EH; Wingeier BM
    Clin Neurophysiol; 2008 Dec; 119(12):2687-96. PubMed ID: 18993113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics.
    Vialatte FB; Martin C; Dubois R; Haddad J; Quenet B; Gervais R; Dreyfus G
    Neural Netw; 2007 Mar; 20(2):194-209. PubMed ID: 17145165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A putatively novel form of spontaneous coordination in neural activity.
    Hermer-Vazquez R; Hermer-Vazquez L; Srinivasan S
    Brain Res Bull; 2009 Apr; 79(1):6-14. PubMed ID: 19167468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization measurement of multiple neuronal populations.
    Li X; Cui D; Jiruska P; Fox JE; Yao X; Jefferys JG
    J Neurophysiol; 2007 Dec; 98(6):3341-8. PubMed ID: 17913983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?
    Bruns A
    J Neurosci Methods; 2004 Aug; 137(2):321-32. PubMed ID: 15262077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated behavioral analysis of limbs' activity in the forced swim test.
    Gersner R; Gordon-Kiwkowitz M; Zangen A
    J Neurosci Methods; 2009 May; 180(1):82-6. PubMed ID: 19427533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.