BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 17935808)

  • 1. The 'extrapolated center of mass' concept suggests a simple control of balance in walking.
    Hof AL
    Hum Mov Sci; 2008 Feb; 27(1):112-25. PubMed ID: 17935808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees.
    Hof AL; van Bockel RM; Schoppen T; Postema K
    Gait Posture; 2007 Feb; 25(2):250-8. PubMed ID: 16740390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The condition for dynamic stability.
    Hof AL; Gazendam MG; Sinke WE
    J Biomech; 2005 Jan; 38(1):1-8. PubMed ID: 15519333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambulatory center of mass prediction using body accelerations and center of foot pressure.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2491-8. PubMed ID: 18990618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balance responses to lateral perturbations in human treadmill walking.
    Hof AL; Vermerris SM; Gjaltema WA
    J Exp Biol; 2010 Aug; 213(Pt 15):2655-64. PubMed ID: 20639427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
    Kuo AD
    Hum Mov Sci; 2007 Aug; 26(4):617-56. PubMed ID: 17617481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal foot shape for a passive dynamic biped.
    Kwan M; Hubbard M
    J Theor Biol; 2007 Sep; 248(2):331-9. PubMed ID: 17570405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing.
    Huang SC; Lu TW; Chen HL; Wang TM; Chou LS
    Med Eng Phys; 2008 Oct; 30(8):968-75. PubMed ID: 18243037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic balance of the children with cerebral palsy and typical developing during gait Part II: Instantaneous velocity and acceleration of COM and COP and their relationship.
    Hsue BJ; Miller F; Su FC
    Gait Posture; 2009 Apr; 29(3):471-6. PubMed ID: 19111468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foot and body control of biped robots to walk on irregularly protruded uneven surfaces.
    Park JH; Kim ES
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):289-97. PubMed ID: 19068443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of gait instability using the center of mass and center of pressure inclination angles.
    Lee HJ; Chou LS
    Arch Phys Med Rehabil; 2006 Apr; 87(4):569-75. PubMed ID: 16571399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of short-term changes in body mass distribution on feed-forward postural control.
    Li X; Aruin AS
    J Electromyogr Kinesiol; 2009 Oct; 19(5):931-41. PubMed ID: 18614379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between obstacle height and center of pressure velocity during obstacle crossing.
    Wang Y; Watanabe K
    Gait Posture; 2008 Jan; 27(1):172-5. PubMed ID: 17416525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human foot placement and balance in the sagittal plane.
    Millard M; Wight D; McPhee J; Kubica E; Wang D
    J Biomech Eng; 2009 Dec; 131(12):121001. PubMed ID: 20524724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Notes on the margin of stability.
    Curtze C; Buurke TJW; McCrum C
    J Biomech; 2024 Mar; 166():112045. PubMed ID: 38484652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilometry is a predictor of gait performance in chronic hemiparetic stroke patients.
    Nardone A; Godi M; Grasso M; Guglielmetti S; Schieppati M
    Gait Posture; 2009 Jul; 30(1):5-10. PubMed ID: 19318253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temporal constraints on medio-lateral stability when negotiating obstacles.
    Nakano W; Fukaya T; Kanai Y; Akizuki K; Ohashi Y
    Gait Posture; 2015 Jul; 42(2):158-64. PubMed ID: 26028527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the margin of stability measure predict medio-lateral stability of gait with a constrained-width base of support?
    Gill L; Huntley AH; Mansfield A
    J Biomech; 2019 Oct; 95():109317. PubMed ID: 31466717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in foot-function parameters during the first 5 months after the onset of independent walking: a longitudinal follow-up study.
    Hallemans A; De Clercq D; Van Dongen S; Aerts P
    Gait Posture; 2006 Feb; 23(2):142-8. PubMed ID: 16399509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of ground reaction force and marker-based methods to estimate mediolateral center of mass displacement and margins of stability during walking.
    Buurke TJW; van de Venis L; den Otter R; Nonnekes J; Keijsers N
    J Biomech; 2023 Jan; 146():111415. PubMed ID: 36542905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.