These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17936038)

  • 1. The effects of toxicological agents on the optics and mitochondria of the lens and the mitochondria of the corneal epithelium.
    Bantseev V; McCanna DJ; Driot JY; Sivak JG
    Semin Cell Dev Biol; 2008 Apr; 19(2):150-9. PubMed ID: 17936038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of contact lens solutions using confocal laser scanning microscopy and the in vitro bovine cornea.
    Bantseev V; McCanna DJ; Driot JY; Ward KW; Sivak JG
    Eye Contact Lens; 2007 Nov; 33(6 Pt 1):308-16. PubMed ID: 17993827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of ocular toxicity using the in vitro bovine lens and sodium dodecyl sulfate as a chemical model.
    Bantseev V; McCanna D; Banh A; Wong WW; Moran KL; Dixon DG; Trevithick JR; Sivak JG
    Toxicol Sci; 2003 May; 73(1):98-107. PubMed ID: 12700424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hyperbaric oxygen on guinea pig lens optical quality and on the refractive state of the eye.
    Bantseev V; Oriowo OM; Giblin FJ; Leverenz VR; Trevithick JR; Sivak JG
    Exp Eye Res; 2004 May; 78(5):925-31. PubMed ID: 15051474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V; Youn HY
    Ann N Y Acad Sci; 2006 Dec; 1091():17-33. PubMed ID: 17341599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bovine corneal stroma and epithelium reconstructed in vitro: characterisation and response to surfactants.
    Parnigotto PP; Bassani V; Montesi F; Conconi MT
    Eye (Lond); 1998; 12 ( Pt 2)():304-10. PubMed ID: 9683960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and optical properties of the corneal lens and retinal structure in the posterior large stemma of the tiger beetle larva.
    Toh Y; Okamura JY
    Vision Res; 2007 Jun; 47(13):1756-68. PubMed ID: 17485105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The mitochondria of the retina, crystalline lens and corneal epithelium of the ox].
    TESTA M
    Ann Ottalmol Clin Ocul; 1961 Mar; 87():121-7. PubMed ID: 13776098
    [No Abstract]   [Full Text] [Related]  

  • 9. Confocal laser scanning microscopy imaging of dynamic TMRE movement in the mitochondria of epithelial and superficial cortical fiber cells of bovine lenses.
    Bantseev V; Sivak JG
    Mol Vis; 2005 Jul; 11():518-23. PubMed ID: 16052167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Charles F. Prentice award lecture 2009: Crystalline lens research and serendipity in science.
    Sivak JG
    Optom Vis Sci; 2010 Sep; 87(9):622-30. PubMed ID: 20581727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Area and depth of surfactant-induced corneal injury correlates with cell death.
    Jester JV; Li HF; Petroll WM; Parker RD; Cavanagh HD; Carr GJ; Smith B; Maurer JK
    Invest Ophthalmol Vis Sci; 1998 May; 39(6):922-36. PubMed ID: 9579472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Area and depth of surfactant-induced corneal injury predicts extent of subsequent ocular responses.
    Jester JV; Petroll WM; Bean J; Parker RD; Carr GJ; Cavanagh HD; Maurer JK
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2610-25. PubMed ID: 9856771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina.
    Vogel A; Capon MR; Asiyo-Vogel MN; Birngruber R
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):3032-44. PubMed ID: 8206720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation.
    Zhang ZY; Chu RY; Zhou XT; Dai JH; Sun XH; Hoffman MR; Zhang XR
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2147-53. PubMed ID: 19136715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant and UV-B-induced damage of the cultured bovine lens.
    Youn HY; Moran KL; Oriowo OM; Bols NC; Sivak JG
    Toxicol In Vitro; 2004 Dec; 18(6):841-52. PubMed ID: 15465651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lens of the eye as a focusing device and its response to stress.
    Banh A; Bantseev V; Choh V; Moran KL; Sivak JG
    Prog Retin Eye Res; 2006 Mar; 25(2):189-206. PubMed ID: 16330238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the ocular refractive components: the Reykjavik Eye Study.
    Olsen T; Arnarsson A; Sasaki H; Sasaki K; Jonasson F
    Acta Ophthalmol Scand; 2007 Jun; 85(4):361-6. PubMed ID: 17286626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning laser measure of optical quality of the cultured crystalline lens.
    Weerheim JA; Sivak JG
    Ophthalmic Physiol Opt; 1992 Jan; 12(1):72-9. PubMed ID: 1584621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide angle optical model of the human eye.
    Pomerantzeff O; Fish H; Govignon J; Schepens CL
    Ann Ophthalmol; 1971 Aug; 3(8):815-9. PubMed ID: 5163774
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of the optical surfaces of the kitten eye.
    Freeman RD; Lai CE
    Vision Res; 1978; 18(4):399-407. PubMed ID: 664318
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.