BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17936244)

  • 1. Characterization of the myristoyl lipid modification of membrane-bound GCAP-2 by 2H solid-state NMR spectroscopy.
    Vogel A; Schröder T; Lange C; Huster D
    Biochim Biophys Acta; 2007 Dec; 1768(12):3171-81. PubMed ID: 17936244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A solid-state NMR study of the structure and dynamics of the myristoylated N-terminus of the guanylate cyclase-activating protein-2.
    Theisgen S; Scheidt HA; Magalhães A; Bonagamba TJ; Huster D
    Biochim Biophys Acta; 2010 Feb; 1798(2):266-74. PubMed ID: 19616509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The presence of membranes or micelles induces structural changes of the myristoylated guanylate-cyclase activating protein-2.
    Theisgen S; Thomas L; Schröder T; Lange C; Kovermann M; Balbach J; Huster D
    Eur Biophys J; 2011 Apr; 40(4):565-76. PubMed ID: 21327964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2.
    Hwang JY; Koch KW
    Biochemistry; 2002 Oct; 41(43):13021-8. PubMed ID: 12390029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The myristoylation of guanylate cyclase-activating protein-2 causes an increase in thermodynamic stability in the presence but not in the absence of Ca²⁺.
    Schröder T; Lilie H; Lange C
    Protein Sci; 2011 Jul; 20(7):1155-65. PubMed ID: 21520322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guanylate Cyclase-Activating Protein-2 Undergoes Structural Changes upon Binding to Detergent Micelles and Bicelles.
    Margetić A; Nannemann D; Meiler J; Huster D; Theisgen S
    Biochim Biophys Acta; 2014 Nov; 1838(11):2767-77. PubMed ID: 25051529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Insights into retinal guanylylcyclase-GCAP-2 interaction determined by cross-linking and mass spectrometry.
    Pettelkau J; Schröder T; Ihling CH; Olausson BE; Kölbel K; Lange C; Sinz A
    Biochemistry; 2012 Jun; 51(24):4932-49. PubMed ID: 22631048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase.
    Olshevskaya EV; Hughes RE; Hurley JB; Dizhoor AM
    J Biol Chem; 1997 May; 272(22):14327-33. PubMed ID: 9162068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory modes of rod outer segment membrane guanylate cyclase differ in catalytic efficiency and Ca(2+)-sensitivity.
    Hwang JY; Lange C; Helten A; Höppner-Heitmann D; Duda T; Sharma RK; Koch KW
    Eur J Biochem; 2003 Sep; 270(18):3814-21. PubMed ID: 12950265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The myristoylation of the neuronal Ca2+ -sensors guanylate cyclase-activating protein 1 and 2.
    Hwang JY; Koch KW
    Biochim Biophys Acta; 2002 Nov; 1600(1-2):111-7. PubMed ID: 12445466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane fluidity is a driving force for recoverin myristoyl immobilization in zwitterionic lipids.
    Potvin-Fournier K; Valois-Paillard G; Lefèvre T; Cantin L; Salesse C; Auger M
    Biochem Biophys Res Commun; 2017 Sep; 490(4):1268-1273. PubMed ID: 28684313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles.
    Struppe J; Komives EA; Taylor SS; Vold RR
    Biochemistry; 1998 Nov; 37(44):15523-7. PubMed ID: 9799515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1.
    Stephen R; Bereta G; Golczak M; Palczewski K; Sousa MC
    Structure; 2007 Nov; 15(11):1392-402. PubMed ID: 17997965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Ca2+, Mg2+, and myristoylation on guanylyl cyclase activating protein 1 structure and stability.
    Lim S; Peshenko I; Dizhoor A; Ames JB
    Biochemistry; 2009 Feb; 48(5):850-62. PubMed ID: 19143494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent conformational changes in bovine GCAP-2.
    Hughes RE; Brzovic PS; Dizhoor AM; Klevit RE; Hurley JB
    Protein Sci; 1998 Dec; 7(12):2675-80. PubMed ID: 9865963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane interaction of small N-myristoylated peptides: implications for membrane anchoring and protein-protein association.
    Sankaram MB
    Biophys J; 1994 Jul; 67(1):105-12. PubMed ID: 7918977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessibilities of N-terminal myristoyl chain and cysteines in guanylyl cyclase-activating protein-2 (GCAP-2) studied by covalent labeling and mass spectrometry.
    Ihling CH; Schröder T; Pettelkau J; Tischer A; Lange C; Sinz A
    Rapid Commun Mass Spectrom; 2014 Apr; 28(7):835-8. PubMed ID: 24573816
    [No Abstract]   [Full Text] [Related]  

  • 18. Binding of a Myristoylated Protein to the Lipid Membrane Influenced by Interactions with the Polar Head Group Region.
    Brand I; Matyszewska D; Koch KW
    Langmuir; 2018 Nov; 34(46):14022-14032. PubMed ID: 30360613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operation profile of zebrafish guanylate cyclase-activating protein 3.
    Fries R; Scholten A; Säftel W; Koch KW
    J Neurochem; 2012 Apr; 121(1):54-65. PubMed ID: 22212098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin.
    Ames JB; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Dec; 270(52):30909-13. PubMed ID: 8537345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.