BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 17936252)

  • 21. Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses.
    Avissar M; Furman AC; Saunders JC; Parsons TD
    J Neurosci; 2007 Jun; 27(24):6461-72. PubMed ID: 17567807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks.
    Meyer K; Rouiller EM; Loquet G
    Hear Res; 2007 Jun; 228(1-2):144-55. PubMed ID: 17391881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve.
    Krishna BS
    J Comput Neurosci; 2002; 13(2):71-91. PubMed ID: 12215723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
    Vogel A; Hennig RM; Ronacher B
    J Neurophysiol; 2005 Jun; 93(6):3548-59. PubMed ID: 15716366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature dependence of temporal resolution in an insect nervous system.
    Franz A; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):261-71. PubMed ID: 12012097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variations on a Dexterous theme: peripheral time-intensity trading.
    Joris PX; Michelet P; Franken TP; McLaughlin M
    Hear Res; 2008 Apr; 238(1-2):49-57. PubMed ID: 18187277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers.
    Rhode WS; Smith PH
    Hear Res; 1985 May; 18(2):159-68. PubMed ID: 2995298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of information redundancy in the ascending auditory pathway.
    Chechik G; Anderson MJ; Bar-Yosef O; Young ED; Tishby N; Nelken I
    Neuron; 2006 Aug; 51(3):359-68. PubMed ID: 16880130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auditory nerve fiber responses to combined acoustic and electric stimulation.
    Miller CA; Abbas PJ; Robinson BK; Nourski KV; Zhang F; Jeng FC
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):425-45. PubMed ID: 19205803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear modeling of auditory-nerve rate responses to wideband stimuli.
    Young ED; Calhoun BM
    J Neurophysiol; 2005 Dec; 94(6):4441-54. PubMed ID: 16162837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning properties of turtle auditory nerve fibers: evidence for suppression and adaptation.
    Sneary MG; Lewis ER
    Hear Res; 2007 Jun; 228(1-2):22-30. PubMed ID: 17331685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biophysical model of an auditory nerve fiber with a novel adaptation component.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2177-80. PubMed ID: 19497810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Manifestations of dynamic coding of the amplitude-modulated sounds on the level of auditory nerve fibres].
    Rimskaia-Korsakova LK; Telepnev VN; DubrovskiÄ­ NA
    Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):700-14. PubMed ID: 12966708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm.
    Bahmer A; Langner G
    Biol Cybern; 2006 Oct; 95(4):371-9. PubMed ID: 16847666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural correlations increase between consecutive processing levels in the auditory system of locusts.
    Vogel A; Ronacher B
    J Neurophysiol; 2007 May; 97(5):3376-85. PubMed ID: 17360818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.