These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 17936252)

  • 41. Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2899-906. PubMed ID: 18753325
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reply to comment on "Auditory-nerve first-spike latency and auditory absolute threshold: a computer model".
    Meddis R
    J Acoust Soc Am; 2006 Sep; 120(3):1192-3. PubMed ID: 17004441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli.
    Schaette R; Gollisch T; Herz AV
    J Neurophysiol; 2005 Jun; 93(6):3270-81. PubMed ID: 15689392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model.
    Carney LH; Yin TC
    J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Auditory-nerve first-spike latency and auditory absolute threshold: a computer model.
    Meddis R
    J Acoust Soc Am; 2006 Jan; 119(1):406-17. PubMed ID: 16454295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Active control of spike-timing dependent synaptic plasticity in an electrosensory system.
    Roberts PD; Bell CC
    J Physiol Paris; 2002; 96(5-6):445-9. PubMed ID: 14692492
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimating receptive fields in the presence of spike-time jitter.
    Gollisch T
    Network; 2006 Jun; 17(2):103-29. PubMed ID: 16818393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Auditory nerve representation of naturally-produced vowels with variable acoustics.
    Stevens HE; Wickesberg RE
    Hear Res; 2005 Jul; 205(1-2):21-34. PubMed ID: 15953512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of intense sound exposure on phase locking in the chick (Gallus domesticus) cochlear nerve.
    Furman AC; Avissar M; Saunders JC
    Eur J Neurosci; 2006 Oct; 24(7):2003-10. PubMed ID: 17067297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multisensory enhancement in the optic tectum of the barn owl: spike count and spike timing.
    Zahar Y; Reches A; Gutfreund Y
    J Neurophysiol; 2009 May; 101(5):2380-94. PubMed ID: 19261710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [A model of the relation of tonotopy and synchronization in the auditory system].
    Berthommier F
    C R Acad Sci III; 1989; 309(18):695-701. PubMed ID: 2513096
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination.
    Javel E; Viemeister NF
    J Acoust Soc Am; 2000 Feb; 107(2):908-21. PubMed ID: 10687700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist.
    McMahon CM; Patuzzi RB; Gibson WP; Sanli H
    Ear Hear; 2008 Jun; 29(3):314-25. PubMed ID: 18344874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of neural refractoriness on spatio-temporal variability in spike initiations with Electrical stimulation.
    Mino H; Rubinstein JT
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):273-80. PubMed ID: 17009486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple model of long-term spike train regularization.
    Brandman R; Nelson ME
    Neural Comput; 2002 Jul; 14(7):1575-97. PubMed ID: 12079547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-term sensorineural hearing loss induces functional changes in the rat auditory nerve.
    Shepherd RK; Roberts LA; Paolini AG
    Eur J Neurosci; 2004 Dec; 20(11):3131-40. PubMed ID: 15579167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.