BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 17936292)

  • 1. Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles.
    Gebhardt KE; Ahn S; Venkatachalam G; Savin DA
    J Colloid Interface Sci; 2008 Jan; 317(1):70-6. PubMed ID: 17936292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH responsiveness of block copolymer vesicles with a polypeptide corona.
    Sigel R; Łosik M; Schlaad H
    Langmuir; 2007 Jun; 23(13):7196-9. PubMed ID: 17516670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature- and pH-responsive self-assembly of poly(propylene oxide)-b-poly(lysine) block copolymers in aqueous solution.
    Naik SS; Ray JG; Savin DA
    Langmuir; 2011 Jun; 27(11):7231-40. PubMed ID: 21563804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers.
    Chécot F; Lecommandoux S; Klok HA; Gnanou Y
    Eur Phys J E Soft Matter; 2003 Jan; 10(1):25-35. PubMed ID: 15011076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular assembly of block copolypeptides with semiconductor nanocrystals.
    Atmaja B; Cha JN; Marshall A; Frank CW
    Langmuir; 2009 Jan; 25(2):707-15. PubMed ID: 19072205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rod-sphere transition in polybutadiene-poly(L-lysine) block copolymer assemblies.
    Gebhardt KE; Ahn S; Venkatachalam G; Savin DA
    Langmuir; 2007 Feb; 23(5):2851-6. PubMed ID: 17309223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of primary amine-based block copolymer vesicles by direct dissolution in water and subsequent stabilization by sol-gel chemistry.
    Du J; Armes SP
    Langmuir; 2008 Dec; 24(23):13710-6. PubMed ID: 18954148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer.
    Rao J; Luo Z; Ge Z; Liu H; Liu S
    Biomacromolecules; 2007 Dec; 8(12):3871-8. PubMed ID: 17979243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(L-lysine) as a model drug macromolecule with which to investigate secondary structure and microporous membrane transport, part 2: diffusion studies.
    Chittchang M; Salamat-Miller N; Alur HH; Vander Velde DG; Mitra AK; Johnston TP
    J Pharm Pharmacol; 2002 Nov; 54(11):1497-505. PubMed ID: 12495552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of pH-responsive mixed aggregates of polystyrene-block-poly(L-lysine) and nonionic surfactant in solution and adsorbed at a solid surface.
    Orts Gil G; Losik M; Schlaad H; Drechsler M; Hellweg T
    Langmuir; 2008 Nov; 24(22):12823-8. PubMed ID: 18925753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleo-copolymers: oligonucleotide-based amphiphilic diblock copolymers.
    Teixeira F; Rigler P; Vebert-Nardin C
    Chem Commun (Camb); 2007 Mar; (11):1130-2. PubMed ID: 17347715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-responsive self-assembly and conformational transition of partially propyl-esterified poly(alpha,beta-L-aspartic acid) as amphiphilic biodegradable polyanion.
    Wang Y; Wang Y; Wu G; Fan Y; Ma J
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):13-9. PubMed ID: 18990548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chain-length dependence of alpha-helix to beta-sheet transition in polylysine: model of protein aggregation studied by temperature-tuned FTIR spectroscopy.
    Dzwolak W; Muraki T; Kato M; Taniguchi Y
    Biopolymers; 2004 Mar; 73(4):463-9. PubMed ID: 14991664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer.
    Du J; Armes SP
    J Am Chem Soc; 2005 Sep; 127(37):12800-1. PubMed ID: 16159264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry.
    Rao J; Zhang Y; Zhang J; Liu S
    Biomacromolecules; 2008 Oct; 9(10):2586-93. PubMed ID: 18611048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organization behavior of methacrylate-based amphiphilic di- and triblock copolymers.
    Rakhmatullina E; Braun T; Chami M; Malinova V; Meier W
    Langmuir; 2007 Nov; 23(24):12371-9. PubMed ID: 17949024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swelling-shrinking behavior of chemically cross-linked polypeptide gels from poly(α-L-lysine), poly(α-DL-lysine), poly(ɛ-L-lysine) and thermally prepared poly(lysine): effects of pH, temperature and additives in the solution.
    Kokufuta MK; Sato S; Kokufuta E
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):299-309. PubMed ID: 21684127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable wettability on cooperative dual-responsive poly-L-lysine surface.
    Guo Y; Xia F; Xu L; Li J; Yang W; Jiang L
    Langmuir; 2010 Jan; 26(2):1024-8. PubMed ID: 20030299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of Janus cylinders into hierarchical superstructures.
    Walther A; Drechsler M; Rosenfeldt S; Harnau L; Ballauff M; Abetz V; Müller AH
    J Am Chem Soc; 2009 Apr; 131(13):4720-8. PubMed ID: 19284726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH/potential-responsive large aggregates from the spontaneous self-assembly of a triblock copolymer in water.
    Hu J; Zhuang X; Huang L; Le L; Chen X; Wei Y; Jing X
    Langmuir; 2008 Dec; 24(23):13376-82. PubMed ID: 18980354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.