BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 17936333)

  • 41. Biological response to variation of acid-volatile sulfides and metals in field-exposed spiked sediments.
    Boothman WS; Hansen DJ; Berry WJ; Robson DL; Helmstetter A; Corbin JM; Pratt SD
    Environ Toxicol Chem; 2001 Feb; 20(2):264-72. PubMed ID: 11351425
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sediment quality in the Douro river estuary based on trace metal contents, macrobenthic community and elutriate sediment toxicity test (ESTT).
    Mucha AP; Bordalo AA; Vasconcelos MT
    J Environ Monit; 2004 Jul; 6(7):585-92. PubMed ID: 15237288
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seasonal bioavailability of sediment-associated heavy metals along the Mississippi river floodplain.
    Grabowski LA; Houpis JL; Woods WI; Johnson KA
    Chemosphere; 2001 Nov; 45(4-5):643-51. PubMed ID: 11680760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measurements of acid volatile sulfide and simultaneously extracted metals are irreproducible among laboratories.
    Hammerschmidt CR; Burton GA
    Environ Toxicol Chem; 2010 Jul; 29(7):1453-6. PubMed ID: 20821593
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf.
    Yang Y; Chen F; Zhang L; Liu J; Wu S; Kang M
    Mar Pollut Bull; 2012 Sep; 64(9):1947-55. PubMed ID: 22677011
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake.
    Macdonald BC; Smith J; Keene AF; Tunks M; Kinsela A; White I
    Sci Total Environ; 2004 Aug; 329(1-3):115-30. PubMed ID: 15262162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.
    Silva JB; Nascimento RA; de Oliva ST; de Oliveira OM; Ferreira SL
    Environ Monit Assess; 2015 Oct; 188(10):554. PubMed ID: 27613290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early diagenetic processes aspects controlling the mobility of dissolved trace metals in three riverine sediment columns.
    Lesven L; Gao Y; Billon G; Leermakers M; Ouddane B; Fischer JC; Baeyens W
    Sci Total Environ; 2008 Dec; 407(1):447-59. PubMed ID: 18834616
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resuspension of contaminated field and formulated reference sediments Part I: Evaluation of metal release under controlled laboratory conditions.
    Cantwell MG; Burgess RM; King JW
    Chemosphere; 2008 Dec; 73(11):1824-31. PubMed ID: 18805563
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrated assessment of sediment quality in a coastal lagoon (Maluan Bay, China) based on AVS-SEM and multivariate statistical analysis.
    Wang Z; Yin L; Qin X; Wang S
    Mar Pollut Bull; 2019 Sep; 146():476-487. PubMed ID: 31426183
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa.
    Simpson SL; Ward D; Strom D; Jolley DF
    Chemosphere; 2012 Aug; 88(8):953-61. PubMed ID: 22494530
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.
    Sparrevik M; Eek E; Grini RS
    Environ Technol; 2009 Jul; 30(8):831-40. PubMed ID: 19705667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [AVS concentrations in Xinan Creek and the influencing factors].
    Liu XB; Wen YM; Li F; Wu CH; Duan ZP
    Huan Jing Ke Xue; 2012 Jul; 33(7):2384-93. PubMed ID: 23002617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of metal toxicity and development of sediment quality guidelines using the equilibrium partitioning model for the Three Gorges Reservoir, China.
    Gao L; Gao B; Wei X; Zhou H; Xu D; Wang Y
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17577-85. PubMed ID: 26141978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Autotrophic denitrification and its effect on metal speciation during marine sediment remediation.
    Shao M; Zhang T; Fang HH
    Water Res; 2009 Jul; 43(12):2961-8. PubMed ID: 19476962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal speciation in sulphidic sediments: a new method based on oxidation kinetics modelling in the presence of EDTA.
    Vanthuyne M; Maes A
    Sci Total Environ; 2006 Aug; 367(1):405-17. PubMed ID: 16697032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heavy metal in sediments of Ziya River in northern China: distribution, potential risks, and source apportionment.
    Zhu X; Shan B; Tang W
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23511-23521. PubMed ID: 27614639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting metal toxicity in sediments: a critique of current approaches.
    Simpson SL; Batley GE
    Integr Environ Assess Manag; 2007 Jan; 3(1):18-31. PubMed ID: 17283593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Field measurement of nickel sediment toxicity: role of acid volatile sulfide.
    Nguyen LT; Burton GA; Schlekat CE; Janssen CR
    Environ Toxicol Chem; 2011 Jan; 30(1):162-72. PubMed ID: 20853448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California.
    Meador JP; Ernest DW; Kagley AN
    Sci Total Environ; 2005 Mar; 339(1-3):189-205. PubMed ID: 15740769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.