These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Magnetic resonance microscopic imaging based on high-order intermolecular multiple-quantum coherences. Cho JH; Ahn S; Lee C; Hong KS; Chung KC; Chang SK; Cheong C; Warren WS Magn Reson Imaging; 2007 Jun; 25(5):626-33. PubMed ID: 17540273 [TBL] [Abstract][Full Text] [Related]
8. Determination of the optimal pulses in MR imaging with magnetization transfer contrast at 7 Tesla. Hamatake S; Onomichi M; Korogi Y; Sakamoto Y; Furusawa M; Ikushima I; Hirai T; Takahashi M Radiat Med; 1997; 15(5):335-40. PubMed ID: 9445157 [TBL] [Abstract][Full Text] [Related]
9. Numerical studies of intermolecular multiple quantum coherences: high-resolution NMR in inhomogeneous fields and contrast enhancement in MRI. Garrett-Roe S; Warren WS J Magn Reson; 2000 Sep; 146(1):1-13. PubMed ID: 10968952 [TBL] [Abstract][Full Text] [Related]
10. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516 [TBL] [Abstract][Full Text] [Related]
11. Improvement in the contrast of CEST MRI via intermolecular double quantum coherences. Zhang S; Zhu X; Chen Z; Cai C; Lin T; Zhong J Phys Med Biol; 2008 Jul; 53(14):N287-96. PubMed ID: 18574314 [TBL] [Abstract][Full Text] [Related]
12. Triple-quantum-filtered imaging of sodium in presence of B(0) inhomogeneities. Tanase C; Boada FE J Magn Reson; 2005 Jun; 174(2):270-8. PubMed ID: 15862244 [TBL] [Abstract][Full Text] [Related]
13. Theoretical formalism and experimental verification of line shapes of NMR intermolecular multiple-quantum coherence spectra. Zheng B; Chen Z; Cai S; Zhong J; Ye C J Chem Phys; 2005 Aug; 123(7):074317. PubMed ID: 16229580 [TBL] [Abstract][Full Text] [Related]
14. Magnetic resonance imaging of the rabbit eye. Improved anatomical detail using magnetization transfer contrast. Ceckler TL; Karino K; Kador PF; Balaban RS Invest Ophthalmol Vis Sci; 1991 Nov; 32(12):3109-13. PubMed ID: 1938286 [TBL] [Abstract][Full Text] [Related]
15. Targeted contrast agent helps to monitor advanced plaque during progression: a magnetic resonance imaging study in rabbits. Zheng J; Ochoa E; Misselwitz B; Yang D; El Naqa I; Woodard PK; Abendschein D Invest Radiol; 2008 Jan; 43(1):49-55. PubMed ID: 18097277 [TBL] [Abstract][Full Text] [Related]
16. Quantification of slow flow using FAIR. Bendel P Magn Reson Imaging; 2009 Jun; 27(5):587-93. PubMed ID: 19110393 [TBL] [Abstract][Full Text] [Related]
17. Microimaging of hairless rat skin by magnetic resonance at 900 MHz. Sharma R Magn Reson Imaging; 2009 Feb; 27(2):240-55. PubMed ID: 18775619 [TBL] [Abstract][Full Text] [Related]
18. MRI of optic neuritis in a rat model. Boretius S; Gadjanski I; Demmer I; Bähr M; Diem R; Michaelis T; Frahm J Neuroimage; 2008 Jun; 41(2):323-34. PubMed ID: 18394926 [TBL] [Abstract][Full Text] [Related]
19. Relayed nuclear Overhauser enhancement imaging with magnetization transfer contrast suppression at 3 T. Huang J; Han X; Chen L; Xu X; Xu J; Chan KWY Magn Reson Med; 2021 Jan; 85(1):254-267. PubMed ID: 32738080 [TBL] [Abstract][Full Text] [Related]
20. Nearly 10(6)-fold enhancements in intermolecular (1)H double-quantum NMR experiments by nuclear hyperpolarization. Mishkovsky M; Eliav U; Navon G; Frydman L J Magn Reson; 2009 Sep; 200(1):142-6. PubMed ID: 19574073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]