BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 17936701)

  • 1. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2.
    Yang H; Minamishima YA; Yan Q; Schlisio S; Ebert BL; Zhang X; Zhang L; Kim WY; Olumi AF; Kaelin WG
    Mol Cell; 2007 Oct; 28(1):15-27. PubMed ID: 17936701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperactivated JNK is a therapeutic target in pVHL-deficient renal cell carcinoma.
    An J; Liu H; Magyar CE; Guo Y; Veena MS; Srivatsan ES; Huang J; Rettig MB
    Cancer Res; 2013 Feb; 73(4):1374-85. PubMed ID: 23393199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway.
    Qi H; Ohh M
    Cancer Res; 2003 Nov; 63(21):7076-80. PubMed ID: 14612498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of von Hippel-Lindau protein synergizes with doxorubicin to suppress hepatocellular carcinoma in mice.
    Wang J; Ma Y; Jiang H; Zhu H; Liu L; Sun B; Pan S; Krissansen GW; Sun X
    J Hepatol; 2011 Aug; 55(2):359-68. PubMed ID: 21168458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pVHL mediates K63-linked ubiquitination of IKKβ, leading to IKKβ inactivation.
    Wang Y; Zhao W; Gao Q; Fan L; Qin Y; Zhou H; Li M; Fang J
    Cancer Lett; 2016 Dec; 383(1):1-8. PubMed ID: 27693634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel-Lindau inactivation in renal cell carcinomas.
    Pantuck AJ; An J; Liu H; Rettig MB
    Cancer Res; 2010 Jan; 70(2):752-61. PubMed ID: 20068166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of receptor for activated C kinase 1 protein by the von Hippel-Lindau tumor suppressor in IGF-I-induced renal carcinoma cell invasiveness.
    He X; Wang J; Messing EM; Wu G
    Oncogene; 2011 Feb; 30(5):535-47. PubMed ID: 20871634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1alpha mediated transcription.
    Ampofo E; Kietzmann T; Zimmer A; Jakupovic M; Montenarh M; Götz C
    Int J Biochem Cell Biol; 2010 Oct; 42(10):1729-35. PubMed ID: 20637892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease.
    Zatyka M; da Silva NF; Clifford SC; Morris MR; Wiesener MS; Eckardt KU; Houlston RS; Richards FM; Latif F; Maher ER
    Cancer Res; 2002 Jul; 62(13):3803-11. PubMed ID: 12097293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of von Hippel-Lindau protein-mediated suppression of nuclear factor kappa B activity.
    An J; Rettig MB
    Mol Cell Biol; 2005 Sep; 25(17):7546-56. PubMed ID: 16107702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. von Hippel-Lindau protein promotes Skp2 destabilization on DNA damage.
    Roe JS; Kim HR; Hwang IY; Cho EJ; Youn HD
    Oncogene; 2011 Jul; 30(28):3127-38. PubMed ID: 21358672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia upregulates von Hippel-Lindau tumor-suppressor protein through RhoA-dependent activity in renal cell carcinoma.
    Turcotte S; Desrosiers RR; Beliveau R
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F338-48. PubMed ID: 14583436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel VHL target genes and relationship to hypoxic response pathways.
    Maina EN; Morris MR; Zatyka M; Raval RR; Banks RE; Richards FM; Johnson CM; Maher ER
    Oncogene; 2005 Jun; 24(28):4549-58. PubMed ID: 15824735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel pVHL-independent but NEMO-driven pathway in renal cancer promotes HIF stabilization.
    Nowicka AM; Häuselmann I; Borsig L; Bolduan S; Schindler M; Schraml P; Heikenwalder M; Moch H
    Oncogene; 2016 Jun; 35(24):3125-38. PubMed ID: 26500060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The von Hippel-Lindau tumor suppressor gene and kidney cancer.
    Kaelin WG
    Clin Cancer Res; 2004 Sep; 10(18 Pt 2):6290S-5S. PubMed ID: 15448019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse effects of mutations in exon II of the von Hippel-Lindau (VHL) tumor suppressor gene on the interaction of pVHL with the cytosolic chaperonin and pVHL-dependent ubiquitin ligase activity.
    Hansen WJ; Ohh M; Moslehi J; Kondo K; Kaelin WG; Welch WJ
    Mol Cell Biol; 2002 Mar; 22(6):1947-60. PubMed ID: 11865071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer cells promote survival through depletion of the von Hippel-Lindau tumor suppressor by protein crosslinking.
    Kim DS; Choi YB; Han BG; Park SY; Jeon Y; Kim DH; Ahn ER; Shin JE; Lee BI; Lee H; Hong KM; Kim SY
    Oncogene; 2011 Dec; 30(48):4780-90. PubMed ID: 21625219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth.
    Kondo K; Kim WY; Lechpammer M; Kaelin WG
    PLoS Biol; 2003 Dec; 1(3):E83. PubMed ID: 14691554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma.
    Clifford SC; Astuti D; Hooper L; Maxwell PH; Ratcliffe PJ; Maher ER
    Oncogene; 2001 Aug; 20(36):5067-74. PubMed ID: 11526493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The emerging role of nuclear factor kappa B in renal cell carcinoma.
    Morais C; Gobe G; Johnson DW; Healy H
    Int J Biochem Cell Biol; 2011 Nov; 43(11):1537-49. PubMed ID: 21854869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.