These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 17936872)
1. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Anawar HM; Garcia-Sanchez A; Santa Regina I Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872 [TBL] [Abstract][Full Text] [Related]
2. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Jang M; Hwang JS; Choi SI Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457 [TBL] [Abstract][Full Text] [Related]
3. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
4. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
5. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Ko I; Chang YY; Lee CH; Kim KW J Hazard Mater; 2005 Dec; 127(1-3):1-13. PubMed ID: 16122872 [TBL] [Abstract][Full Text] [Related]
6. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea. Nam SM; Kim M; Hyun S; Lee SH Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095 [TBL] [Abstract][Full Text] [Related]
7. Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes. Li F; Zheng YM; He JZ Sci Total Environ; 2009 Apr; 407(8):2631-40. PubMed ID: 19155050 [TBL] [Abstract][Full Text] [Related]
8. Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure. Nóvoa-Muñoz JC; Queijeiro JM; Blanco-Ward D; Alvarez-Olleros C; García-Rodeja E; Martínez-Cortizas A Sci Total Environ; 2007 May; 378(1-2):18-22. PubMed ID: 17289117 [TBL] [Abstract][Full Text] [Related]
9. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study. Datta R; Sarkar D; Sharma S; Sand K Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204 [TBL] [Abstract][Full Text] [Related]
10. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
11. Distribution and mobility of arsenic in soils of a mining area (Western Spain). García-Sánchez A; Alonso-Rojo P; Santos-Francés F Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319 [TBL] [Abstract][Full Text] [Related]
12. Chemical extraction methods to assess bioavailable arsenic in soil and solid media. Rodriguez RR; Basta NT; Casteel SW; Armstrong FP; Ward DC J Environ Qual; 2003; 32(3):876-84. PubMed ID: 12809288 [TBL] [Abstract][Full Text] [Related]
13. Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Reis AT; Rodrigues SM; Davidson CM; Pereira E; Duarte AC Chemosphere; 2010 Dec; 81(11):1369-77. PubMed ID: 20932549 [TBL] [Abstract][Full Text] [Related]
14. In situ chemical fixation of arsenic-contaminated soils: an experimental study. Yang L; Donahoe RJ; Redwine JC Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278 [TBL] [Abstract][Full Text] [Related]
15. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E; Naidu R; Weber J; Juhasz AL Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842 [TBL] [Abstract][Full Text] [Related]
16. Estimation of lead bioavailability in smelter-contaminated soils by single and sequential extraction procedure. Chen S; Sun L; Chao L; Zhou Q; Sun T Bull Environ Contam Toxicol; 2009 Jan; 82(1):43-7. PubMed ID: 18854907 [TBL] [Abstract][Full Text] [Related]
17. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Sarkar D; Makris KC; Parra-Noonan MT; Datta R Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861 [TBL] [Abstract][Full Text] [Related]
18. Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.). De Gregori I; Fuentes E; Olivares D; Pinochet H J Environ Monit; 2004 Jan; 6(1):38-47. PubMed ID: 14737469 [TBL] [Abstract][Full Text] [Related]
19. Bioavailability of xenobiotics in the soil environment. Katayama A; Bhula R; Burns GR; Carazo E; Felsot A; Hamilton D; Harris C; Kim YH; Kleter G; Koedel W; Linders J; Peijnenburg JG; Sabljic A; Stephenson RG; Racke DK; Rubin B; Tanaka K; Unsworth J; Wauchope RD Rev Environ Contam Toxicol; 2010; 203():1-86. PubMed ID: 19957116 [TBL] [Abstract][Full Text] [Related]
20. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Ruiz E; Rodríguez L; Alonso-Azcárate J Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]