These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17936878)

  • 1. Measures to reduce pesticide spray drift in a small aquatic ecosystem in vineyard estate.
    Vischetti C; Cardinali A; Monaci E; Nicelli M; Ferrari F; Trevisan M; Capri E
    Sci Total Environ; 2008 Jan; 389(2-3):497-502. PubMed ID: 17936878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms.
    de Snoo GR; de Wit PJ
    Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pesticide buffer zones for the protection of wildlife.
    Burn A
    Pest Manag Sci; 2003 May; 59(5):583-90. PubMed ID: 12741527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition and dissipation of chlorpyrifos in surface water following vineyard applications in northern Italy.
    Capri E; Balderacchi M; Yon D; Reeves G
    Environ Toxicol Chem; 2005 Apr; 24(4):852-60. PubMed ID: 15839559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorpyrifos-methyl dissipation in a small adjacent water body following application to citrus.
    Padovani L; Capri E
    Chemosphere; 2005 Mar; 58(9):1219-29. PubMed ID: 15667842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data.
    Allwine KJ; Thistle HW; Teske ME; Anhold J
    Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray drift reduction techniques for vineyards in fragmented landscapes.
    Otto S; Loddo D; Baldoin C; Zanin G
    J Environ Manage; 2015 Oct; 162():290-8. PubMed ID: 26265598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of natural windbreaks on drift reduction in orchard spraying.
    Wenneker M; Heijne B; van de Zande JC
    Commun Agric Appl Biol Sci; 2005; 70(4):961-9. PubMed ID: 16628943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review.
    Reichenberger S; Bach M; Skitschak A; Frede HG
    Sci Total Environ; 2007 Oct; 384(1-3):1-35. PubMed ID: 17588646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray drift as affected by meteorological conditions.
    Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H
    Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Windbreaks as a pesticide drift mitigation strategy: a review.
    Ucar T; Hall FR
    Pest Manag Sci; 2001 Aug; 57(8):663-75. PubMed ID: 11517719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of realtime spray drift using RTDrift Gaussian advection-diffusion model.
    Lebeau F; Verstraete A; Schiffers B; Destain MF
    Commun Agric Appl Biol Sci; 2009; 74(1):11-24. PubMed ID: 20218507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: A case study of the Voluntary Initiative in the UK.
    Garratt J; Kennedy A
    Pest Manag Sci; 2006 Dec; 62(12):1138-49. PubMed ID: 16981249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are spray drift losses to agricultural roads more important for surface water contamination than direct drift to surface waters?
    Schönenberger UT; Simon J; Stamm C
    Sci Total Environ; 2022 Feb; 809():151102. PubMed ID: 34688746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk mitigation measures for diffuse pesticide entry into aquatic ecosystems: proposal of a guide to identify appropriate measures on a catchment scale.
    Bereswill R; Streloke M; Schulz R
    Integr Environ Assess Manag; 2014 Apr; 10(2):286-98. PubMed ID: 24431010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements.
    Arvidsson T; Bergström L; Kreuger J
    Pest Manag Sci; 2011 Jun; 67(6):725-33. PubMed ID: 21445941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landscape-level approach to assess aquatic exposure via spray drift for pesticides: a case study in a Mediterranean area.
    Padovani L; Capri E; Trevisan M
    Environ Sci Technol; 2004 Jun; 38(12):3239-46. PubMed ID: 15260319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.