These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 17936983)

  • 21. Biocomputational strategies for microbial drug target identification.
    Sakharkar KR; Sakharkar MK; Chow VT
    Methods Mol Med; 2008; 142():1-9. PubMed ID: 18437301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide Identification and Characterization of Natural Antisense Transcripts by Strand-specific RNA Sequencing in Ganoderma lucidum.
    Shao J; Chen H; Yang D; Jiang M; Zhang H; Wu B; Li J; Yuan L; Liu C
    Sci Rep; 2017 Jul; 7(1):5711. PubMed ID: 28720793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards high-throughput functional target discovery in angiogenesis research.
    van Beijnum JR; Eijgelaar WJ; Griffioen AW
    Trends Mol Med; 2006 Jan; 12(1):44-52. PubMed ID: 16325471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide validation of Magnaporthe grisea gene structures based on transcription evidence.
    Numa H; Nishimura M; Tanaka T; Kanamori H; Yang CC; Matsumoto T; Nagamura Y; Itoh T
    FEBS Lett; 2009 Feb; 583(4):797-800. PubMed ID: 19186180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple.
    Han Y; Chagné D; Gasic K; Rikkerink EH; Beever JE; Gardiner SE; Korban SS
    Genomics; 2009 Mar; 93(3):282-8. PubMed ID: 19059473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification.
    Perumal D; Lim CS; Sakharkar KR; Sakharkar MK
    In Silico Biol; 2007; 7(4-5):453-65. PubMed ID: 18391237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide identification of small RNA targets based on target enrichment and microarray hybridizations.
    Franco-Zorrilla JM; Del Toro FJ; Godoy M; Pérez-Pérez J; López-Vidriero I; Oliveros JC; García-Casado G; Llave C; Solano R
    Plant J; 2009 Sep; 59(5):840-50. PubMed ID: 19453461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth.
    Manos J; Arthur J; Rose B; Bell S; Tingpej P; Hu H; Webb J; Kjelleberg S; Gorrell MD; Bye P; Harbour C
    FEMS Microbiol Lett; 2009 Mar; 292(1):107-14. PubMed ID: 19222585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical evaluation of the FANTOM3 non-coding RNA transcripts.
    Nordström KJ; Mirza MA; Almén MS; Gloriam DE; Fredriksson R; Schiöth HB
    Genomics; 2009 Sep; 94(3):169-76. PubMed ID: 19505569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Techniques for the isolation and use of conditionally expressed antisense RNA to achieve essential gene knockdowns in Staphylococcus aureus.
    Forsyth A; Wang L
    Methods Mol Biol; 2008; 416():307-21. PubMed ID: 18392976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of essential genes in Staphylococcus aureus by construction and screening of conditional mutant library.
    Yin D; Ji Y
    Methods Mol Biol; 2008; 416():297-305. PubMed ID: 18392975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate.
    Nde CW; Jang HJ; Toghrol F; Bentley WE
    Environ Sci Technol; 2009 Nov; 43(21):8406-15. PubMed ID: 19924977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sense-antisense pairs in mammals: functional and evolutionary considerations.
    Galante PA; Vidal DO; de Souza JE; Camargo AA; de Souza SJ
    Genome Biol; 2007; 8(3):R40. PubMed ID: 17371592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA antisense purification (RAP) for mapping RNA interactions with chromatin.
    Engreitz J; Lander ES; Guttman M
    Methods Mol Biol; 2015; 1262():183-97. PubMed ID: 25555582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.
    Chen D; Yuan C; Zhang J; Zhang Z; Bai L; Meng Y; Chen LL; Chen M
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D1187-93. PubMed ID: 22058132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a rapid and inexpensive method to reveal natural antisense transcripts.
    Collani S; Barcaccia G
    Plant Methods; 2012 Sep; 8(1):37. PubMed ID: 22971421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural antisense transcripts in diseases: From modes of action to targeted therapies.
    Wanowska E; Kubiak MR; Rosikiewicz W; Makałowska I; Szcześniak MW
    Wiley Interdiscip Rev RNA; 2018 Mar; 9(2):. PubMed ID: 29341438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark.
    Zhao S; Zhang X; Chen S; Zhang S
    J Exp Clin Cancer Res; 2020 Sep; 39(1):187. PubMed ID: 32928281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A shotgun antisense approach to the identification of novel essential genes in Pseudomonas aeruginosa.
    Rusmini R; Vecchietti D; Macchi R; Vidal-Aroca F; Bertoni G
    BMC Microbiol; 2014 Feb; 14():24. PubMed ID: 24499134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic and Chemical-Based Methods to Inactivate Endogenous Blood Ribonucleases for Nucleic Acid Diagnostics.
    Bender AT; Sullivan BP; Lillis L; Posner JD
    J Mol Diagn; 2020 Aug; 22(8):1030-1040. PubMed ID: 32450280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.