These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17937111)

  • 41. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints.
    Venturato C; Pavan PG; Forestiero A; Carniel EL; Natali AN
    Acta Bioeng Biomech; 2014; 16(2):57-65. PubMed ID: 25088586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discrete element and finite element methods provide similar estimations for hip joint contact mechanics during walking gait.
    Li M; Venäläinen MS; Chandra SS; Patel R; Fripp J; Engstrom C; Korhonen RK; Töyräs J; Crozier S
    J Biomech; 2021 Jan; 115():110163. PubMed ID: 33338974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An analysis of the squeeze-film lubrication mechanism for articular cartilage.
    Hou JS; Mow VC; Lai WM; Holmes MH
    J Biomech; 1992 Mar; 25(3):247-59. PubMed ID: 1564060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanical influence of bone spicules in the osteochondral junction: A finite element modelling study.
    Arjmandi M; Kelly PA; Thambyah A
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2335-2351. PubMed ID: 34468916
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rolling resistance of articular cartilage due to interstitial fluid flow.
    Ateshian GA; Wang H
    Proc Inst Mech Eng H; 1997; 211(5):419-24. PubMed ID: 9427837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Joint contact stresses calculated for acetabular dysplasia patients using discrete element analysis are significantly influenced by the applied gait pattern.
    Thomas-Aitken HD; Willey MC; Goetz JE
    J Biomech; 2018 Oct; 79():45-53. PubMed ID: 30104055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Joint contact mechanics in the early stages of osteoarthritis.
    Wu JZ; Herzog W; Epstein M
    Med Eng Phys; 2000 Jan; 22(1):1-12. PubMed ID: 10817944
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finite element analyses of repaired articular surfaces.
    Wayne JS; Woo SL; Kwan MK
    Proc Inst Mech Eng H; 1991; 205(3):155-62. PubMed ID: 1823789
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.
    Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG
    J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A note on an asymptotic solution for the contact of two biphasic cartilage layers in a loaded synovial joint at rest.
    Hlavácek M
    J Biomech; 1999 Sep; 32(9):987-91. PubMed ID: 10460137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 1998 Oct; 120(5):608-13. PubMed ID: 10412438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The biomechanics of the human patella during passive knee flexion.
    Heegaard J; Leyvraz PF; Curnier A; Rakotomanana L; Huiskes R
    J Biomech; 1995 Nov; 28(11):1265-79. PubMed ID: 8522541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validation of finite element predictions of cartilage contact pressure in the human hip joint.
    Anderson AE; Ellis BJ; Maas SA; Peters CL; Weiss JA
    J Biomech Eng; 2008 Oct; 130(5):051008. PubMed ID: 19045515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A nonlinear biphasic viscohyperelastic model for articular cartilage.
    García JJ; Cortés DH
    J Biomech; 2006; 39(16):2991-8. PubMed ID: 16316659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.