These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17937199)

  • 1. Normalization of load and clearance effects in ball-in-socket-like replacements.
    Ciavarella M; Strozzi A; Baldini A; Giacopini M
    Proc Inst Mech Eng H; 2007 Aug; 221(6):601-11. PubMed ID: 17937199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation.
    Wang FC; Liu F; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(5):283-91. PubMed ID: 15532994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preliminary hip joint simulator study of the migration of a cemented femoral stem.
    Liu C; Green SM; Watkins ND; Gregg PJ; McCaskie AW
    Proc Inst Mech Eng H; 2003; 217(2):127-35. PubMed ID: 12666780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of physiological loading in total hip replacements.
    Ramos A; Fonseca F; Simões JA
    J Biomech Eng; 2006 Aug; 128(4):579-87. PubMed ID: 16813449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the reliability of ceramic hip joint implants.
    Weisse B; Zahner M; Weber W; Rieger W
    J Biomech; 2003 Nov; 36(11):1633-9. PubMed ID: 14522204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design aspects of compliant, soft layer bearings for an experimental hip prosthesis.
    Scholes SC; Unsworth A; Blamey JM; Burgess IC; Jones E; Smith N
    Proc Inst Mech Eng H; 2005; 219(2):79-87. PubMed ID: 15819479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation on mechanical failure of hip joint using finite element method.
    Sofuoglu H; Cetin ME
    Biomed Tech (Berl); 2015 Dec; 60(6):603-16. PubMed ID: 25996481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Partial load after knee and hip total endoprosthesis: impossibility of observing their causes and remedies].
    Z Orthop Ihre Grenzgeb; 2005; 143(2):124-8. PubMed ID: 15849615
    [No Abstract]   [Full Text] [Related]  

  • 9. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact mechanics analysis of metal-on-metal hip resurfacing prostheses.
    Udofia IJ; Yew A; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(5):293-305. PubMed ID: 15532995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric element analysis of fretting in a model of a modular femoral component of a hip implant.
    Lewis G
    Biomed Mater Eng; 2004; 14(1):43-51. PubMed ID: 14757952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Appropriate radial clearance of ceramic-on-ceramic total hip prostheses to realize squeeze-film lubrication.
    Mabuchi K; Sakai R; Ota M; Ujihira M
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):362-9. PubMed ID: 15109756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue testing of a proximal femoral hip component.
    Macdonald W; Carlsson LV; Gathercole N; Jacobsson CM
    Proc Inst Mech Eng H; 2003; 217(2):137-45. PubMed ID: 12666781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of acetabular cup size on the short-term stability of revision hip arthroplasty: a finite element investigation.
    Phillips AT; Pankaj ; Usmani AS; Howie CR
    Proc Inst Mech Eng H; 2004; 218(4):239-49. PubMed ID: 15376726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone remodelling of a proximal femur with the thrust plate prosthesis: an in vitro case.
    Taylor WR; Ploeg H; Hertig D; Warner MD; Clift SE
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):131-7. PubMed ID: 15512756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wear simulation of ultra-high molecular weight polyethylene hip implants by incorporating the effects of cross-shear and contact pressure.
    Kang L; Galvin AL; Brown TD; Fisher J; Jin ZM
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1049-64. PubMed ID: 19024153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of dynamics and contact mechanics of artificial hip joints in a pendulum model.
    Liu H; Ellison PJ; Xu H; Jin Z
    Proc Inst Mech Eng H; 2010; 224(8):989-1003. PubMed ID: 20923116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient elastohydrodynamic lubrication analysis of metal-on-metal hip implant under simulated walking conditions.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    J Biomech; 2006; 39(5):905-14. PubMed ID: 16199048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements.
    Gao L; Wang F; Yang P; Jin Z
    Med Eng Phys; 2009 Jul; 31(6):720-9. PubMed ID: 19269879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analytical computational model for the determination of the influence of design and surgical factors on the range of motion of total hip replacements].
    Kliewe C; Souffrant R; Kluess D; Woernle C; Brökel K; Bader R
    Biomed Tech (Berl); 2010 Feb; 55(1):47-55. PubMed ID: 20128745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.