BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17937200)

  • 41. Femoral component revision with use of impaction bone-grafting and a cemented polished stem: a concise follow-up, at fifteen to twenty years, of a previous report.
    te Stroet MA; Gardeniers JW; Verdonschot N; Rijnen WH; Slooff TJ; Schreurs BW
    J Bone Joint Surg Am; 2012 Dec; 94(23):e1731-4. PubMed ID: 23224393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional finite element stress and strain analysis of a transfemoral osseointegration implant.
    Xu W; Xu DH; Crocombe AD
    Proc Inst Mech Eng H; 2006 Aug; 220(6):661-70. PubMed ID: 16961185
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Personal experience with the Wagner revision stem in hip joint reoperations].
    Cech O; StehlĂ­k J; Krbec M; Vrecion V
    Acta Chir Orthop Traumatol Cech; 2001; 68(3):148-61. PubMed ID: 11706537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A customised collared polished stem may reduce the complication rate of impaction grafting in revision hip surgery: a 12-year follow-up study.
    Flecher X; Blanc G; Sainsous B; Parratte S; Argenson JN
    J Bone Joint Surg Br; 2012 May; 94(5):609-14. PubMed ID: 22529078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impaction bone grafting for periprosthetic fractures around a total hip arthroplasty.
    Youssef B; Pavlou G; Shah N; Macheras G; Tsiridis E
    Injury; 2014 Nov; 45(11):1674-80. PubMed ID: 25201031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The compatibility of ceramic bone graft substitutes as allograft extenders for use in impaction grafting of the femur.
    Blom AW; Cunningham JL; Hughes G; Lawes TJ; Smith N; Blunn G; Learmonth ID; Goodship AE
    J Bone Joint Surg Br; 2005 Mar; 87(3):421-5. PubMed ID: 15773658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of acetabular cup size on the short-term stability of revision hip arthroplasty: a finite element investigation.
    Phillips AT; Pankaj ; Usmani AS; Howie CR
    Proc Inst Mech Eng H; 2004; 218(4):239-49. PubMed ID: 15376726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stress shielding and stress concentration of contemporary epiphyseal hip prostheses.
    Cristofolini L; Juszczyk M; Taddei F; Field RE; Rushton N; Viceconti M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):27-44. PubMed ID: 19239065
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Revision of the femoral prosthesis with impaction allografting.
    Dattani R; Blunn G
    Acta Orthop Belg; 2007 Oct; 73(5):558-65. PubMed ID: 18019909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reconstruction of non-contained acetabular defects with impaction grafting, a reinforcement mesh and a cemented polyethylene acetabular component.
    Waddell BS; Della Valle AG
    Bone Joint J; 2017 Jan; 99-B(1 Supple A):25-30. PubMed ID: 28042115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Femoral revision surgery with impaction bone grafting: 31 hips followed prospectively for ten to 15 years.
    Ten Have BL; Brouwer RW; van Biezen FC; Verhaar JA
    J Bone Joint Surg Br; 2012 May; 94(5):615-8. PubMed ID: 22529079
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morsellized bone grafting compensates for femoral bone loss in revision total knee arthroplasty. An experimental study.
    van Loon CJ; de Waal Malefijt MC; Verdonschot N; Buma P; van der Aa AJ; Huiskes R
    Biomaterials; 1999 Jan; 20(1):85-9. PubMed ID: 9916775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of morselised bone for impaction grafting using a blender method.
    Ruddy M; FitzPatrick DP; Stanton KT
    J Mech Behav Biomed Mater; 2018 Feb; 78():91-95. PubMed ID: 29145011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical considerations in impaction bone grafting.
    Brewster NT; Gillespie WJ; Howie CR; Madabhushi SP; Usmani AS; Fairbairn DR
    J Bone Joint Surg Br; 1999 Jan; 81(1):118-24. PubMed ID: 10068018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A review of pre-clinical testing of femoral stem subsidence and comparison with clinical data.
    Gheduzzi S; Miles AW
    Proc Inst Mech Eng H; 2007 Jan; 221(1):39-46. PubMed ID: 17315767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An analysis of polymer type and chain length for use as a biological composite graft extender in impaction bone grafting: a mechanical and biocompatibility study.
    Tayton E; Fahmy S; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Lanham S; Howdle S; Shakesheff K; Dunlop DG; Oreffo RO
    J Biomed Mater Res A; 2012 Dec; 100(12):3211-9. PubMed ID: 22707404
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing a hydroxyapatite/tricalcium-phosphate ceramic as a bone graft extender for impaction grafting.
    Grimm B; Miles AW; Turner IG
    J Mater Sci Mater Med; 2001; 12(10-12):929-34. PubMed ID: 15348342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wire mesh allows more revascularization than a strut in impaction bone grafting: an animal study in goats.
    Bolder SB; Schreurs BW; Verdonschot N; Veth RP; Buma P
    Clin Orthop Relat Res; 2004 Jun; (423):280-6. PubMed ID: 15232463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transient pulmonary embolism during impaction bone grafting of the femur.
    Dabke HV; Blundell CM; Hodgson JD; Calder DA
    Hip Int; 2004; 14(1):48-50. PubMed ID: 28247379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.